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Quantum theory
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Introduction

● Quantum theory can be defined via a short 
number of clear postulates.

● Although these postulates are strictly speaking 
independent, one can ask questions of the 
following type:

● “Are there theories with the same pure states as 
quantum theory?”  
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Introduction

● Need a general framework to talk about theories.
● What type of theory is quantum theory?
● Is it an information theory? A logic? A form of 

mechanics? A general probability theory? A 
process theory?
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Introduction

● Are there logics with the same measurement 
structure as quantum theory but different states?

● Are there operational theories with the same pure 
states and dynamics as quantum theory but 
different measurements?

● The answers to these questions will tell us how 
independent the postulate are.
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Introduction

● Is it possible to change one part of quantum 
theory whilst keeping the others constant?

● Could we obtain a future theory of physics by 
making “perturbations” to the current theory? Or 
will we need a radical overhaul?
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Introduction

● If we assume quantum theory is a form of logic, then the 
structure of measurements fully encodes the probability 
rule.

● Assuming it is a GPT means that the dynamical part 
fully determines the probabilistic part.

● Adopting different perspectives on quantum theory will 
allow for different insights into what it has to tell us.

● I don’t argue that any of the perspectives I adopt today 
are the final word, rather they are useful stepping stones.



Quantum logic and 
Gleason’s theorem



9

Mathematical Foundations of Quantum 
Mechanics, Von Neumann (1932)



10
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Quantum logic

● Facts about quantum systems do not obey the 
rules of classical logic

● Need a new set of rules (a quantum logic) to 
reason about propositions 



Classical logic
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Classical logic (propositional)

● A set of rules about propositions
● Propositions can be true or false
● Can connect propositions together to form 

formulae using connectives: “and” , “or”
● One connective is implication 
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Classical logic (propositional)

● A set of rules about propositions
● Propositions can be true or false

      P       Q   P or Q

      T       T       T

      T       F       T

      F       T       T

      F       F       F
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Classical logic

● A set of rules about propositions
● Propositions can be true or false
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Classical logic as set theory

p
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Classical logic as set theory

p

p = being red = all red objects
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Logical connectives in set theoretic language

p q

p = being red = all red objects

q = being square = all square objects
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Logical connectives in set theoretic language

● “and” is set intersection

p q

p = being red = all red objects

q = being square = all square objects
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Logical connectives in set theoretic language

● “and” is set intersection

p q

p and q
p = being red = all red objects

q = being square = all square objects
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Logical connectives in set theoretic language

● “or” is set union

p q

p or q
p = being red = all red objects

q = being square = all square objects
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Logical connectives in set theoretic language

● “or” is set union

p q

p or q
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Classical logic as set theory

p = “particle is in the blue circle”
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Logical connectives in set theoretic language

● “not” is complement set

not p = “particle is not in the blue circle”
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Logical connectives in set theoretic language

● What is implication?
● All things p are also q
● “Being a square implies having four sides”
● All squares are four sided 
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Implication

q
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Implication

qp



28

Implication as set inclusion

● Implication is given by set inclusion

qp



29

Classical logic 

● Classical physics:

a cb d

p = “particle is in interval [a,c]”
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Classical logic 

● Classical physics:

a b c d

q = “particle is in interval [b,d]”
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Classical logic 

● Classical physics:

a b c d

p and q = “particle is in interval [b,c]”
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A simple example
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A simple example
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A simple example
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Logic as set theory

● Propositions correspond to sets.
● Implication amongst propositions given by set 

inclusion.
● Set inclusion is a partial order:
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Implication

qp
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Implication

qp
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Lattice
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Complete lattice

● Complete lattice: Partially ordered set where 
every pair of elements has a “and” and “or” 
defined (meet and join)

● Meet: greatest lower bound
● Join: least upper bound
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Complete lattices
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Complete lattices

Meet? Greatest lower bound
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Complete lattices

Meet? Greatest lower bound
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Complete lattices

Meet? Greatest lower bound
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Complete lattices

Join? Lowest upper bound
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● A logic is just a complete lattice
● Classical logic is distributive lattice
● p and (q or r) = (p and q) or (p and r)
● p or (q and r) = (p or q) and (p or r)
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● A logic is just a complete lattice
● Classical logic is distributive lattice
● Quantum logic is a non-distributive lattice
● We have a vantage point to talk about general 

non-classical logics, of which quantum logic is an 
example.
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Quantum logic

● Propositions correspond to subspaces of H.
● Examples:   ,    ,
● Quantum logic is a lattice of subspaces 
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Quantum logic
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Quantum logic
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Quantum logic
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Quantum logic

● Propositions correspond to subspaces of H.
● Implication given by inclusion of subspaces
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Quantum logic
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Quantum logic

● Propositions correspond to subspaces of H.
● “and” is given by intersection 
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Quantum logic
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Quantum logic

● Propositions correspond to subspaces of H.
● “or” is given by span
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Quantum logic
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Quantum logic
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Quantum logic

● Propositions correspond to subspaces of H.
● Negation is given by orthogonal subspace
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Quantum logic
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Quantum logic

● Propositions correspond to subspaces of H.
● Implication given by inclusion of subspaces
● “and” is given by intersection 
● “or” is given by span
● Negation is given by orthogonal complement 

(orthocomplemented lattice)
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Quantum logic
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Non-distributivity of quantum logic
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Non-distributivity of quantum logic
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Non-distributivity of quantum logic



65

Non-distributivity of quantum logic
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Non-distributivity of quantum logic
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Non-distributivity of quantum logic
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Non-distributivity of quantum logic
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Non-distributivity of quantum logic
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Operational quantum logic

● Propositions (subspaces) can be thought of as 
answers to yes/no questions (Mackey). 

● These questions are the (projective) 
measurements we carry out.
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Gleason’s theorem

● If the answers correspond to subspaces, what are 
the possible probability assignments?

● Measure 

● For mutually exclusive answers we expect 
probabilities to add: 
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Gleason’s theorem

● If the answers correspond to subspaces, what are 
the possible probability assignments?

● For    projectors onto orthogonal subspaces 
(mutually exclusive properties) 
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Gleason’s theorem

The only measures on L(H) (for       ) which 
obey the lattice structure are of the form

Where   is a density operator  
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Axiomatisations of quantum theory

● Assume the structure of questions and answers
● The only probability rule compatible with the 

lattice structure of subspaces is the Born rule
● Recover the probability rule and states.
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A sketch for a reconstruction

● Assume structure of questions
● Use Gleason’s theorem to get states and 

probability rule
● Use theorem by Wigner to get the unitary group
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Conclusion

● We adopted a certain perspective on quantum 
theory.

● Namely it is an Operational Quantum Logic
● Using this perspective we see that the axioms 

about the probability rule (and states) directly 
follow from the structure of projective 
measurements.
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Conclusion

● In classical physics experimental propositions can 
be identified with sets

● In quantum physics experimental propositions 
can be identified with subspaces

● Both have a lattice structure
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Where next?

● We will adopt a different operational perspective
● That of General Probabilistic Theories
● Using this perspective we see that the axioms 

about the probability rule (and measurements) 
directly follow from the structure of pure states.



General probabilistic 
theories
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Operationalism (1927)

https://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/significance_2/index.html
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Operationalism

● “We mean by any concept nothing more than a 
set of operations; the concept is synonymous with 
the corresponding set of operations.” Bridgman 
(1927) 

● For instance concept of length should reduce to a 
set of operations one can carry out with a ruler.
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Operationalism

● Special relativity
● Theories defined via a small number of 

operational principles.
● Operational reconstructions of quantum theory
● See Lluis Masanes lectures from last summer 

school
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General probabilistic theories
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The operational approach to physical theories

● In the operational approach a theory just allows 
us to make predictions about the outcomes of 
measurements.

● No claims are made about ontology or underlying 
physical reality.

● We have access to some physical devices which 
we can wire together, and the theory allows us to 
make predictions about what will happen.
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The operational approach to physical theories

● Operational principles will lead to certain 
mathematical structure

● Mixing: convex structure
● Composition of devices: categorical structure



86

Primitives

● The primitives are devices: preparation, 
transformation and measurement devices. 
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The operational approach

● The primitives are devices: preparation, 
transformation and measurement devices. 

Preparation choice
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Measurement device

● The primitives are devices: preparation, 
transformation and measurement devices. 

Measurement readout
Measurement choice
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Prepare and measure

● The primitives are devices: preparation, 
transformation and measurement devices. 

Preparation choice Measurement readout
Measurement choice
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An example: qubit

Prepare Outcome 
Measure in Z basis
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Transformation devices



92

The operational approach in quantum 
foundations

● For various different settings of the preparation 
device we collect the statistics for various 
measurements.

● We use these statistics to generate the state space 
and effect space.



93

An example: qubit

Prepare Outcome 
Measure in Z basis

Outcome 
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The operational approach in quantum 
foundations

● The classical world: laboratories, agents and 
classical probability theory is assumed.

● Fundamentally not about systems, but about 
devices, and the correlations between classical 
inputs and outputs of these devices.

● From the collected statistics we derive the state 
and effect space.
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Classical probability theory (finite 
dimensional)

wikipedia Getty images
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Classical systems (finite dimensions)

● Consider a ball which can be placed in one of two 
boxes: 
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Classical systems (finite dimensions)
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Classical systems (finite dimensions)
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Preparations

● A preparation consists of putting the ball in one 
of the boxes and closing them.

● I can choose to put the ball in box 1 with some 
probability p, and box 2 with probability 1-p

p

1-p
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Preparations

● A preparation consists of putting the ball in one 
of the boxes and closing them.

● I can choose to put the ball in box 1 with some 
probability p, and box 2 with probability 1-p

● This is called preparing an ensemble, and is a 
central assumption of the GPT framework
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Preparing an ensemble

p

1-p
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Measurements

● I give the closed box to someone else
● They can carry out a measurement: open the box 

to see which partition the ball is in
● For a given preparation we repeat this many 

times
● The measurement has two outcomes: “The ball is 

in box 0” and “The ball is in box 1”.



103

An example

Prepare 
 

Outcome 
Measurement: open both boxes 
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An example

Prepare  
Outcome 

Measurement: open both boxes 
p 

1-p 

Outcome 
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States

● For a given preparation outcome 0 will occur 
with probability p, and outcome 1 with 
probability 1-p

State just allows us to make predictions.
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States

p

1-p
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States

● A state is a probability distribution over 
outcomes 

● Just like in operational quantum logic
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State space
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State space

Extremal states (pure states)
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State space

Convex hull of extremal points
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Convex combination
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State space

Extremal states (pure states)

Mixed states (describes an ensemble)
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Subnormalised states

● The experimenter can also choose to just send an 
empty box

●

●

● This will give probability 0 for all measurement 
outcomes, and hence is represented by 

●  



114
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Cone of states

Normalised states

Subnormalised states
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Effects

● How do I obtain the probability p(0|P) of 
obtaining outcome 0 from the state     ?
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Effects

What is probability of outcome 0 or outcome 1 
occurring?

What is probability of neither outcome occurring?
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Subnormalised states

● The experimenter can also prepare mixtures of 
the empty box and preparations with a ball in 
one of the partition

p

1-p
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Effects

is an effect. It is a linear functional of states (dual vector).  



120
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Effect space
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Effect space
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Effect space
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The trit 
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The trit 
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Trit state space
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Classical four level systems

● Tetrahedron, embedded in        , just drawing 
the normalised states
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Classical systems

● A classical system with d pure states is a simplex 
with d extremal points.

● Line segment, triangle, tetrahedron... 
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Deriving the quantum state space
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Qubit: deriving the state space

● Pure states
● Two outcome measurements

● Can prepare ensembles 
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Qubit: deriving the state space

0.25

0.75



132

Qubit

Could write a state as a vector of probability 
distributions over outcomes

●
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Qubit

● Could write a state as a vector of probability 
distributions over outcomes.

● But would be infinitely long.
● And contains redundancies.

●
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Qubit

● Any                      can be written as a linear 
combination of 4 functions of the form 

● For instance we can have the +X,+Y,+Z and -Z 
outcome probabilities as the basis functions.

● Could be a SIC-POVM
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The probabilistic representation
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The probabilistic representation

Any outcome probability can be computed as a linear function
 of the 4 fiducial probabilities.
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Representing ensembles

is the mixed state representing the ensemble P
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Representing ensembles

● Mixed state representing ensemble                 is 
obtained by taking convex combination of vectors 
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Qubit state space

  https://commons.wikimedia.org/w/index.php?curid=5829358
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Probabilistic representation

● This is the representation of states in which 
ensembles are represented by convex 
combinations of state vectors.

● For example the Bloch vector 
representation/density matrix representation.

● This is the representation we use in GPTs.
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Key facts about the probabilistic 
representation

● Outcome probabilities are linear functions of the 
states. 

● We went from                     to  
● We can take mixtures of states by taking convex 

combinations of state vectors.
● Since for any pair of states we can take a mixture 

the state space is convex.
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Convex sets

● For every pair of points in the set the line 
segment joining them is part of the set.
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● Classical and quantum state spaces correspond to 
convex sets.

● Other convex sets correspond to other non-
classical systems.

● Like the general lattice structure and non-
classical logics.
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General GPT: single system

State space

Effect space
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How to “read” a convex state space

Mixtures of states:
●

a b

c

d

0.25

0.75

0.5

0.5

a

b

c

d
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“True” definition of mixed states

● Multiple ensembles are assigned the same mixed 
state.

● A mixed state is an equivalence class of 
ensembles.

● See Holevo: “Probabilistic and Statistical Aspects 
of Quantum Theory”
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Perfectly distinguishable states

a

b

Outcome 0 

Outcome 1 
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How to “read” a convex state space

● Effects are linear functionals. 
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How to “read” a convex state space

● Effects are linear functionals. 
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Perfectly distinguishable states

● So antipodal states are perfectly distinguishable.
● There is a single measurement where one of the 

outcomes occurs with certainty on one of the 
states, and with probability 0 for the other
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The gbit (one half of a PR box)

● Let us consider a system which can be prepared 
in 4 pure states, and mixtures of these 4 pure 
states.

● Its state space is the square.
● Like all non-classical state spaces, there are 

certain ensembles which are indistinguishable.
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Indistinguishable ensembles

A B

CD
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How to “read” a convex state space

A B

CD
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How to “read” a convex state space

A B

CD

Can perfectly distinguish A,B from C,D
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How to “read” a convex state space

A

Can we perfectly distinguish A from B?

B
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How to “read” a convex state space

A

B

Can we perfectly distinguish A from B?
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How to “read” a convex state space

A

B

Can we perfectly distinguish A from B?
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How to “read” a convex state space

A

B

Can we perfectly distinguish A from B?
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Composite systems

● As well as composing devices in sequence

● Can compose the in parallel 

Preparation choice Measurement readout
Measurement choice
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Parallel composition

A

B
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Operational probabilistic theories
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Composite systems

A

B
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Composite systems (no-signalling)

A

B
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Composite systems (no-signalling)

B

A
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Reduced states

A

B
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Composite systems: state spaces

A ABB
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Product states

A ABB

P:
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Product states: quantum theory
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Product states

● This map is bilinear (due to mixing)
● If we assume local tomography it is just a tensor 

product
● But not in general
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Reduced states

AAB

R:
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Reduced states: quantum theory
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Reduced states

● This map is a linear map from       to
● Obtained by taking the unit effect on subsytem B 

and the identity on A
●   
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Effect space

● We have equivalent maps on the effect space.  



174

Conclusion

● Have a framework within which we can talk about 
operational theories: general probabilistic theories

● Highlighted the convex structure, which arises from 
the possibility of taking mixtures

● Mentioned the categorical structure which arises 
from composing devices

● Arbitrary convex sets correspond to non-classical 
systems
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Redundancy of the measurement postulates of 
quantum theory
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1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Quantum theory



  

1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Theories with modified measurements



  

Alternative probabilistic structure

Outcome Probability Function



  

Alternative probabilistic structure

Measurement



  

1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Theories with modified measurements 



  

Theories with modified measurements 

● A measurement postulate is a set of OPFs 
●     for every 
● Any subset which sum to 1 form a measurement
● In the case of quantum theory we have 



  

1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Theories with modified measurements 



  

1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Theories with modified measurements 

Probabilistic structure



  

1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Theories with modified measurements 

Probabilistic structure
Dynamical

Structure



  

1) States

2) Transformations

3)

4) 

5) Composition 

Quantum theory



  

Warning!

Changing the measurement postulates will change 
the structure of mixed states 



  

What are mixed states?



  

Mixed states 

Mixed states are equivalence classes of 
indistinguishable ensembles.

Indistinguishability is relative to the available 
measurements.

Changing the measurements will change which 
ensembles are indistinguishable.



  

State spaces

Systems with alternative measurement postulates 
have same pure states but different mixed states.
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Mixed states: rebit



192

Mixed states

● If we allowed different measurements, these two 
ensembles may be distinguishable.
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Alternative rebit
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Alternative rebit
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Alternative rebit
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Alternative rebit
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Alternative rebit
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Mixed states

● We can no longer represent mixed states by 
density matrices when we change the 
measurements.

● Need to re-derive the mixed states



  

1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Theories with modified measurements 
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Deriving the state space

● Find a set of fiducial measurements in 

● Quantum theory  
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Deriving the state space
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Mixed states

● The pure states of quantum theory correspond to 
rays in

● Every embedding of these pure states into      
gives a system with same pure states but 
different measurements

● So pure state structure of quantum theory does 
not fix the measurements.
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Classifying all alternatives to the Born rule

● So can classify all alternatives to the 
measurements postulates

● All state spaces with same pure states but 
different mixed states as quantum theory

● All possible embeddings of         (as a manifold) 
in  
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Representation theory and the Bloch sphere
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Probabilistic representation of transformations
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Probabilistic representation of transformations

Representation of SU(d)
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● Alternative measurement postulate implies 
different mixed states

● Different representations act on these different 
mixed states

● Alternative measurement postulate in 
correspondence with representation of SU(d)
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1) States

2) Transformations

3) Measurements

4) Probabilities

5) Composition 

Theories with modified measurements 
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Composite systems

● Systems A and B and AB.
●

●

● Measurement on system A and B should 
correspond to a joint measurement on AB.
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Joint measurements

A

B
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Joint measurements

AB
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What about composite systems?

● Need a product between systems, and specifically 
between the OPFs:

● This product needs to obey certain constraints

● Other constraints also follow from operational 
considerations.



214

The quantum case:
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Associativity

A

B

C
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Associativity

A

B

C
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Associativity

A

B

C
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Associativity

● Subjective groupings of devices lead to the same 
operational predictions

● “pre-operational” constraint
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What about composite systems?
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The result

● The only OPFs which obey this associativity 
constraint are the quantum ones.

● Under the assumption that (as a vector space) 
these sets are finite dimensional.

● Proof makes use of the linear action of the 
unitary group on  



221

The theorem

The only measurement postulate satisfying the 
“possibility of state estimation” has OPFs and

    -product of the form

for all           and                       where the  
operator    satisfies              and analogously for G.
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Conclusion

● The only GPT with the same dynamical 
structure as quantum theory is quantum theory 
itself

● The measurement postulates are redundant 
(assuming the operational framework)
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Other approaches
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Other approaches
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Conclusion
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Perspectives on quantum theory

● Quantum logic
● General probabilistic theory
● Many others: Qubism, process theories...
● Also many non-operational approaches
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How to study quantum theory

● We have seen how to study GPTs and non-
classical logics.

● Quantum theory is just one instance of a GPT or 
NCL

● What about other (non operational) approaches?
●  What is a general branching theory for instance?
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Perspectives on quantum theory

● Different approaches provide different insights
● In the case of studying postulates I have used two 

different approaches: Quantum Logic and GPTs
● We were able to compress the postulates in two 

directions.
● Is there a more succinct formulation of quantum 

theory?
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Perspectives on quantum theory

● There are multiple mathematical structures in 
quantum theory

● A lattice structure (of subspaces)
● A convex structure (of state and effect spaces)
● Other structures to be explored: categorical...
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Perspectives on quantum theory

● There is a unique logic with the same 
measurement structure as quantum theory: 
quantum theory

● There is a unique GPT with the same dynamical 
structure as quantum theory: quantum theory
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Perspectives on quantum theory

● There are redundancies within the postulates of 
quantum theory.

● But need a background framework within which 
we can define things and show these 
redundancies.
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