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Quantum Measurements and Indeterminism

Quantum mechanics is formally an indeterministic theory

Born rule
Probability of obtaining the outcome 1 when measuring Py = |¢) (5|
on a state [)) is Pr(@ | ) = (] Ps |0).

However, debate about quantum measurement centres on the
ontological status of the Born rule
m Often interpreted as an objective probability distribution implying
quantum indeterminism
m Advantage of QRNGs, for example, often attributed to such
“intrinsic randomness”

m Born: ‘I myself am inclined to give up determinism in the world
of atoms.”
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Eigenstate—Eigenvalue Link

Eigenvalue—Eigenstate link

A system in a state |¢)) has a definite property of an observable A if
and only if [¢) is an eigenstate of A.

m The "“if" direction is relatively uncontentious

m The other direction assumes quantum indeterminism if the Born
rule gives probabilities in (0, 1)

m We will say an observable is value definite if such a property
exists (for a given [¢)); otherwise it is value indefinite
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Eigenstate—Eigenvalue Link

Eigenvalue—Eigenstate link

A system in a state |¢)) has a definite property of an observable A if
and only if [¢) is an eigenstate of A.

m The "“if" direction is relatively uncontentious

m The other direction assumes quantum indeterminism if the Born
rule gives probabilities in (0, 1)

m We will say an observable is value definite if such a property
exists (for a given [¢)); otherwise it is value indefinite

Why is the E-E link so commonly adopted?
m No-go theorems rule out large classes of classic alternatives
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No-Go Theorems: Bell

Local Realism

Any hidden variables must only have local influences:

A B
x,yla,b) = alz, \)p(bly, M)p(A)dA
o, 9la,B) /ﬂ\ p(bly, p(N) )T(\A/IT/

Bell's Theorem

No local hidden variable model can reproduce the statistical
predictions of quantum mechanics.

m Bell's Theorem rules out deterministic local theories, but also
indeterministic ones

m This shows a deeper nonlocal aspect of QM, irrespective of status
of determinism
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No-Go Theorems: Kochen-Specker

Kochen-Specker Theorem

No deterministic noncontextual hidden variable theory for quantum
states in d > 3 Hilbert space.

m Such theories are logically (rather than statistically) inconsistent
with QM
m Can be turned into testable, statistical contradictions
m State independent
m Standard formulation more directly addresses deterministic HVs
m Tradeoff is dependence on quantum logical structure

| will look more carefully about what can be deduced about
(in)determinism from the Kochen-Specker Theorem
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The Kochen-Specker Theorem (Informal)

As is common we will restrict ourselves to rank-1 projection
observables Py, = |¢) (¢

Context

A context in C™ is a set of n mutually compatible (i.e., commuting)
observables.
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The Kochen-Specker Theorem (Informal)

As is common we will restrict ourselves to rank-1 projection
observables Py, = |¢) (¢

Context

A context in C" is a set of n mutually compatible (i.e., commuting)
observables.

Kochen-Specker Theorem (Informal)

In dimension d > 3 Hilbert space there is no hidden variable theory
that satisfies the following criteria:

1. Every observable is assigned a definite value of 0 or 1 specifying
the measurement outcome;

2. These definite values depend only on the observable in question
and not the context that it may be measured in;

3. Exactly one observable in each context is assigned the value 1.
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The Kochen-Specker Theorem (Formal)

We formalise such a HVT with a noncontextual value assignment
function v : O — {0,1}, where O is a set of observables

Kochen-Specker Theorem

There exists a finite set of observables O in dimension d > 3 Hilbert
space such that there is no value assignment v satisfying:

1. Value definiteness: v is total, i.e. v(P) is defined for all P € O;

2. Noncontextuality: v is a function of P only, i.e.
v(P,Cy) = v(P,Cy) = v(P) for all contexts Cy,Cy C O
containing P;

3. Quantum correspondence: For every context C' C O we have
> pecv(P)=1.
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Proving the KS Theorem

Kochen-Specker Theorem (concise)

There exists a finite set O such that there is no noncontextual value
assignment function v on O satisfying Y p. v(P) = 1 for all
contexts C C O.
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What Does a Contradiction Prove?

What can we conclude from the Kochen-Specker Theorem? Either we
reject:
m “Quantum correspondence” (3 pcov(P) = 1): but then
quantum predictions for compatible measurements are violated

m Noncontextuality: we obtain a contextual hidden variable
theories

m Logically consistent with quantum mechanics and can be
physically motivated (e.g. Bohmian mechanics)

m Value definiteness: then some observables must be value
indefinite and thus the associated measurement indeterministic
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What Does a Contradiction Prove?

What can we conclude from the Kochen-Specker Theorem? Either we
reject:
m “Quantum correspondence” (3 pcov(P) = 1): but then
quantum predictions for compatible measurements are violated
m Noncontextuality: we obtain a contextual hidden variable
theories
m Logically consistent with quantum mechanics and can be
physically motivated (e.g. Bohmian mechanics)
m Value definiteness: then some observables must be value
indefinite and thus the associated measurement indeterministic

This last possibility only shows failure of complete determinism,
whereas the E-E link posits that all non-eigenstate measurements are
indeterministic
m Can this gap be tightened, or must one simply appeal to
symmetry?
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A Digression on Contextuality

“Contextuality” traditionally taken to mean the impossibility of a
noncontextual hidden variable theory
m Must VI observables really be contextual, or is indeterminism an
escape path?
m Spekkens and co. consider a more general operational approach

to (non)contextuality applicable to indeterministic hidden
variable theories, mixed states and POVMs to counter this

m Kochen-Specker Theorem shows impossibility of “outcome
deterministic” measurement noncontextuality

Since we are focusing on the implications for determinism, we will not
adopt this approach here
m Could also demand that value assignments reproduce quantum
mechanics: tr[pP] = >, p(A)vr(P)
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How Much Value Indefiniteness?

Can one show that particular observables must be value indefinite?

m We need to weaken the assumptions we make first
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How Much Value Indefiniteness?

Can one show that particular observables must be value indefinite?
m We need to weaken the assumptions we make first

m For any set of observables O can clearly always find a state |¢)
such that we expect some observables in O to be value definite

m If system is in state [¢)), we should have
U(Pw) =1
m The “safe” direction of the
eigenvalue-eigenstate link
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How Much Value Indefiniteness?

Can one show that particular observables must be value indefinite?
m We need to weaken the assumptions we make first

m For any set of observables O can clearly always find a state |¢)
such that we expect some observables in O to be value definite

m If system is in state [¢)), we should have
U(Pw) =1
m The “safe” direction of the
eigenvalue-eigenstate link
m If an observable Py has v(Py) =1, can
any incompatible P4 be shown to be
value indefinite?
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Partial Value Assignment Functions

In focusing on value indefiniteness, we only assume definite values
behave noncontextuality: we make no assumption about the
behaviour of value indefinite observables

Partial (noncontextual) value assignment functions

A partial value assignment function is a value assignment function
v: O — {0,1} that is undefined on some observables P € O.

m v(P) undefined if P is value indefinite
m Value definite observables must be noncontextual as before
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Admissibility

How should the condition that for all C' C O, Y pcv(P) = 1 be
generalised when contexts may contain value indefinite observables?
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Admissibility

How should the condition that for all C' C O, Y pcv(P) = 1 be
generalised when contexts may contain value indefinite observables?
m If the value definiteness of an observable P allows the values of
other compatible observables to be “predicted with certainty”,
then those observables should also be value definite

Admissibility of v

A (partial) value assignment function v is admissible if for every

context C' C O:

(a) if there exists a P € C with v(P) = 1, then v(P’) = 0 for all
P e C\{P};

(b) if there exists a P € C with v(P’) = 0 for all P" € C'\ {P}, then
v(P) =1.
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Admissibility provides a weaker way to deduce value definiteness of
observables

m Example: Can we have v(Py) = 1 and Py value definite?
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m Example: Can we have v(Py) = 1 and Py value definite?
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Localising Value Indefiniteness

Strong Kochen-Specker Theorem

Let n > 3. If an observable P on C" is assigned the value 1, then no
other incompatible observable can be consistently assigned a definite
value at all —i.e., is value indefinite.
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Localising Value Indefiniteness

Strong Kochen-Specker Theorem

Let n > 3 and [¢) , |¢) € C" be states such that 0 < [(¢|¢)| < 1.
Then there is a finite set of observables O containing P, and Py for
which there is no admissible value assignment function on O such
that v(Py) = 1 and P, is value definite.
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Localising Value Indefiniteness

Strong Kochen-Specker Theorem

Let n > 3 and [¢) , |¢) € C" be states such that 0 < [(¢|¢)| < 1.
Then there is a finite set of observables O containing P, and Py for
which there is no admissible value assignment function on O such
that v(Py) = 1 and P, is value definite.

If O is finite then it clearly must depend on both |¢) and |¢)

We prove in 3 steps:

1. We first prove the explicit case that |(¢)|¢)| = %

2. We prove a reduction for 0 < [(¢|¢)| < % to the first case.

3. We prove a reduction for the last case of % < |(¢|o)| < 1.
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Explicit Case

The Greechie diagram below is realisable for |(1|¢)| = %

Assuming v(Py) = v(Pp) = 1, we derive a contradiction:
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Explicit Case

The Greechie diagram below is realisable for |(1|¢)| = %

Assuming v(Py) = v(Pp) = 1, we derive a contradiction:

Py

2
la)=(1,0,0) |bY=(2,1,1) [1)=(0,1,1) [2)=(0,1,-1) 13y=(v2,-1,-1)
[4)=(0,0,1) 15)=(0,1,0) 16)=(v2,1,-3) [7y=(1,-v2,0) 8)=(¥2,-3,1)
19)=(1,0,-v2) [10)=(~'2,1,0) [11)=(¥2,0,1) [12)=(V2,-2,-3) 113)=(1,-v2,¥2)
[14)=(V2,-3,-2) [15)=(1,V2,-V2) 116)=(V8,1,-1) 117)=(V8,-1,1) [18)=(V2,-7,-3)
[19)=(V2,-1,3) 120) = (¥2,-3,-7) [21) = (¥/2,3,-1) 122y =(1,v2,0) [23)=(1,0,2)
[24) = (¥2,-1,-3) [25)=(V2,-1,1) [26)=(V2,-3,-1) [27y=(¥2,1,-1) [28) = (¥2,-1,0)
[29) =(¥2,0,-1) 130) =(¥2,2,3) 131)=(¥2,3,2) [32) =(v2,3,7) [33)=(¥2,7,3)
[34)=(v2,1,3) 135) =(¥2,3,1)

Py 1
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Explicit Case
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Assuming v(Py) = v(Pp) = 1, we derive a contradiction:
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Explicit Case

The Greechie diagram below is realisable for |(1|¢)| = %

Assuming v(Py) = v(Pp) = 1, we derive a contradiction:

Py @
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Explicit Case

The Greechie diagram below is realisable for |(1|¢)| = %
Similarly for v(Py) = 1, v(Ps) = 0 we get a contradiction:
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Explicit Case

The Greechie diagram below is realisable for |(1|¢)| = %
Similarly for v(Py) = 1, v(Ps) = 0 we get a contradiction:

XXOJQ:’

Py @
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Constructive Reductions

This shows some value indefinite observables can indeed be identified:

Localised Value Indefiniteness

If |(¥|o)| = % and v(Py) = 1 then P, must be value indefinite
under any admissible value assignment function.
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This shows some value indefinite observables can indeed be identified:

Localised Value Indefiniteness

If |(¥|o)| = % and v(Py) = 1 then P, must be value indefinite
under any admissible value assignment function.

Are there finite Greechie diagrams that allow any P, with
0 < [{(¥|¢)] <1 to be shown to be value indefinite?

m In general, Greechie diagrams realisable for a many sets of
observables

m We were unable to find any simple such example
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Constructive Reductions

This shows some value indefinite observables can indeed be identified:

Localised Value Indefiniteness

If |(¥|o)| = % and v(Py) = 1 then P, must be value indefinite
under any admissible value assignment function.

Are there finite Greechie diagrams that allow any P, with
0 < [{(¥|¢)] <1 to be shown to be value indefinite?
m In general, Greechie diagrams realisable for a many sets of
observables
m We were unable to find any simple such example
m We thus need reductions:

m For any |¢), construct a set of observables containing Py, Py and

Pe with |[(¥|¢)| = % such that if v(Py) = 1 and Py value

definite, then P must be value definite too
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First Reduction: Contraction

Contraction Lemma

Given |a), |b) € C3 and z € C with 0 < |[(a|b)| < |z| < 1 there exists
a |c) with (a|c) = z and a set of observables O D {P,, P, P.} such
that any admissible value assignment function with

v(P,) = v(Py) = 1 must have v(P,) =1 also.

The simplest Greechie diagram with this property is:
P,

O

Py
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First Reduction: Contraction

m Let p = (ald), |a) = (0,0,1) (v1—p2%0,p)
m Requiring (a|a) = (b|3) = < | ) = < | > (Blc) = 0 one finds
p(l - 2%)

ct) = (z,£V1 — 22 — 22, 2) with x =
es) = ( ) =

m |c4) is closer to both |a) and [b): |{(a|b)| < |{alcx)| < 1 and
[{alb)| < [{bles)| <1

P,

P c
P, O Py

P,
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First Reduction: Contraction

Corollary

If v(Py) =v(Py) =1and 0 < [(|¢)| < % then we can find a [€)
with (¢|€) = % and v(FP¢) = 1 under any admissible v.
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First Reduction: Contraction

Corollary

If v(Py) =v(Py) =1and 0 < [(|¢)| < % then we can find a [€)
with (¢|€) = % and v(FP¢) = 1 under any admissible v.

m The orthogonality relation used in the Contraction Lemma is
only nontrivial “building block™ for diagrams “forcing” value
definiteness

m Forcing the value definiteness of a |¢) with |(¢)|¢)| close to 1
more difficult

m No single diagram appears sufficient
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Second Reduction: Expansion

Expansion Lemma

Given |a), |[b) € C3 with < [(a|b)| < 1 there exists |c) , |d) with
0 < |{c|d)| < |(alb)| and a set of observables O D {P,, By, P., P;}
such that any admissible v with v(P,) = v(P,) = 1 must have
’U(Pc) = ’U(Pd) =1.

PC

Py
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Second Reduction: Expansion

Taking |c) and |d) as the |c4) vectors from the previous lemma with z

chosen so that |(a|cy)| = [(b|cs)| one can verify that
4
(eld)| =3 — =
< ap 1

which for [(a[b)| > 1 is positive and |{c|d)| < |(a|b)| as desired.

m For |(a|b)| close to 1 the difference |(a|b)| — |{c|d)| is small: one
must iterate the procedure the procedure to obtain a large
enough angle between |c) and |d)
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Second Reduction: Expansion

Iteration Lemma

Given |a), |b) € C3 with 3 < [(a|b)| < 1 there exists |c) , |d) with
0 < |{c|d)| < % and a set of observables O > {P,, P, P., Py} such
that any admissible v with v(P,) = v(F,) = 1 must have

’U(Pc) = ’U(Pd) =1.
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Completing the Proof

Non-convergence to a value greater than 1/3 proved by noting

b (3 4)

decreasing on u € (3, 1).

m Note that [(a|b)| — |{c|d)| = D(|(a]b)]), etc.

A. A. Abbott Localising Value Indefiniteness 24 / 30



Completing the Proof

Non-convergence to a value greater than 1/3 proved by noting

b (3 4)

decreasing on u € (3, 1).

m Note that [(a|b)| — |{c|d)| = D(|(a]b)]), etc.

Corollary

If v(Py) = v(P¢) =land0< 5 < |(¥|¢)|, then we can find a [¢)
with (y[€) = and v(P) =1 under any admissible v.
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Completing the Proof

To complete the proof, need to show v(F¢) = 0 also leads to a

contradiction

(ORL

O
Py Py
@ O O
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Completing the Proof

To complete the proof, need to show v(F¢) = 0 also leads to a

contradiction

It is easy to see that v(P;) = 0 implies v(Py) = 1 for some |¢')

(ORL

®
Py Py
@ @ O

For any given P incompatible with P, the reductions give
constructively a finite set of observables O containing Py, and P

with the desired properties

A. A. Abbott Localising Value Indefiniteness 25 / 30



Interpreting the Result

Eigenstate Value Definiteness

If a system in in state [¢), then v(Py) = 1 for any faithful value
assignment function.

Interpretation

If a system is in a state |¢), then the result of measuring an
observable A is indeterministic unless |¢)) is an eigenstate of A.

m We assume only that Einstein-type “elements of physical reality”
must be noncontextual

m Contextual hidden variables can’t be ruled out

m We assume one direction of the E-E link and, under this
assumption, prove the other

m Quantum states must be maximally value indefinite
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Experimental Testability

Noncontextuality inequalities have been crucial in making
contextuality operationally accessible

<A1A2> + <A2A3> + <A3A4> + <A4A5> + <A5A1> > -3

m Derived assuming every observable is noncontextually value
definite

m Quantum correspondence not enforced
m Admissibility crucial to our argument
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Experimental Testability

Noncontextuality inequalities have been crucial in making
contextuality operationally accessible

<A1A2> + <A2A3> + <A3A4> + <A4A5> + <A5A1> > -3

m Derived assuming every observable is noncontextually value
definite
m Quantum correspondence not enforced
m Admissibility crucial to our argument
m State independent inequalities violated by any state

m Ensuring one observable in inequality corresponds to prepared
state is operationally infeasible
m Operationally can only use mixed states and POVMs

m Assigning definite values to POVMs problematic, and can't
appeal to eigenstate value definiteness
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Operational Notions of Contextuality

Spekkens showed how to generalise noncontextuality to operational
theories
m Operationally equivalent measurements and preparations should
be ontologically equivalent

m One motivation: avoid concluding indeterminism instead of
contextuality

m We are precisely interested in indeterminism
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Operational Notions of Contextuality

Spekkens showed how to generalise noncontextuality to operational
theories

m Operationally equivalent measurements and preparations should
be ontologically equivalent

m One motivation: avoid concluding indeterminism instead of
contextuality

m We are precisely interested in indeterminism

Can we draw conclusions about (non)contextuality of value indefinite
observables?

(P, C) € {0, 1, undefined} — &(k|Pc, \) € [0,1]

u ’U/\(P, C) S {0,1} - §(v>\(P, C)‘Pc,/\) =1
m Correspondence with QM: (| Ply) = >, £(1|Pa, AN p(Aly)
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What about contextuality then?

For a given state |¢) can always assign all value indefinite P the
noncontextual probability

E(A[P,A) = (Y| Pp)

so measurement noncontextuality always possible!
m We show no P incompatible with Py can have £(1|P, ) € {0,1}
assuming measurement NC
m Implied by Gleason's theorem also

1
R. Spekkens, PRA 71, 052108 (2005).
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What about contextuality then?

For a given state |¢) can always assign all value indefinite P the
noncontextual probability

E(A[P,A) = (Y| Pp)

so measurement noncontextuality always possible!
m We show no P incompatible with Py can have £(1|P, ) € {0,1}
assuming measurement NC
m Implied by Gleason's theorem also

Preparation noncontextuality = outcome determinism —
contradiction with measurement noncontextuality
m Do any weaker assumptions on operational noncontextuality
imply our assumptions?

1
R. Spekkens, PRA 71, 052108 (2005).
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Summary

The Strong Kochen-Specker Theorem allows value indefinite
observables to be “localised”
m Shows the extent of indeterminism (while KS shows its existence)
m Important for understanding quantum randomness, where
individual measurements should be indeterministic
m Doesn't constitute randomness in-and-of itself: quantum
randomness is unpredictability that can be seen as arising from
this indeterminism

Helps clarify status of quantum indeterminism in QM by bridging the
gap between Bell/KS Theorems and the E-E link

m Significance for operational approaches to contextuality remains
to be clarified
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