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Quantum Measurements and Indeterminism

Quantum mechanics is formally an indeterministic theory

Born rule

Probability of obtaining the outcome 1 when measuring Pφ = |φ〉〈φ|
on a state |ψ〉 is Pr(φ | ψ) = 〈ψ|Pφ |ψ〉.

However, debate about quantum measurement centres on the
ontological status of the Born rule

Often interpreted as an objective probability distribution implying
quantum indeterminism

Advantage of QRNGs, for example, often attributed to such
“intrinsic randomness”

Born: “I myself am inclined to give up determinism in the world
of atoms.”
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Eigenstate–Eigenvalue Link

Eigenvalue–Eigenstate link

A system in a state |ψ〉 has a definite property of an observable A if
and only if |ψ〉 is an eigenstate of A.

The “if” direction is relatively uncontentious

The other direction assumes quantum indeterminism if the Born
rule gives probabilities in (0, 1)

We will say an observable is value definite if such a property
exists (for a given |ψ〉); otherwise it is value indefinite

Why is the E-E link so commonly adopted?

No-go theorems rule out large classes of classic alternatives
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No-Go Theorems: Bell

Local Realism

Any hidden variables must only have local influences:

p(x, y|a, b) =
∫
λ
p(a|x, λ)p(b|y, λ)p(λ)dλ

Bell’s Theorem

No local hidden variable model can reproduce the statistical
predictions of quantum mechanics.

Bell’s Theorem rules out deterministic local theories, but also
indeterministic ones

This shows a deeper nonlocal aspect of QM, irrespective of status
of determinism
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No-Go Theorems: Kochen-Specker

Kochen-Specker Theorem

No deterministic noncontextual hidden variable theory for quantum
states in d ≥ 3 Hilbert space.

Such theories are logically (rather than statistically) inconsistent
with QM

Can be turned into testable, statistical contradictions

State independent

Standard formulation more directly addresses deterministic HVs

Tradeoff is dependence on quantum logical structure

I will look more carefully about what can be deduced about
(in)determinism from the Kochen-Specker Theorem
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The Kochen-Specker Theorem (Informal)

As is common we will restrict ourselves to rank-1 projection
observables Pψ = |ψ〉〈ψ|

Context

A context in Cn is a set of n mutually compatible (i.e., commuting)
observables.

Kochen-Specker Theorem (Informal)

In dimension d ≥ 3 Hilbert space there is no hidden variable theory
that satisfies the following criteria:

1. Every observable is assigned a definite value of 0 or 1 specifying
the measurement outcome;

2. These definite values depend only on the observable in question
and not the context that it may be measured in;

3. Exactly one observable in each context is assigned the value 1.
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The Kochen-Specker Theorem (Formal)

We formalise such a HVT with a noncontextual value assignment
function v : O → {0, 1}, where O is a set of observables

Kochen-Specker Theorem

There exists a finite set of observables O in dimension d ≥ 3 Hilbert
space such that there is no value assignment v satisfying:

1. Value definiteness: v is total, i.e. v(P ) is defined for all P ∈ O;

2. Noncontextuality: v is a function of P only, i.e.
v(P,C1) = v(P,C2) = v(P ) for all contexts C1, C2 ⊂ O
containing P ;

3. Quantum correspondence: For every context C ⊂ O we have∑
P∈C v(P ) = 1.
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Proving the KS Theorem

Kochen-Specker Theorem (concise)

There exists a finite set O such that there is no noncontextual value
assignment function v on O satisfying

∑
P∈C v(P ) = 1 for all

contexts C ⊂ O.
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What Does a Contradiction Prove?

What can we conclude from the Kochen-Specker Theorem? Either we
reject:

“Quantum correspondence” (
∑

P∈C v(P ) = 1): but then
quantum predictions for compatible measurements are violated

Noncontextuality: we obtain a contextual hidden variable
theories

Logically consistent with quantum mechanics and can be
physically motivated (e.g. Bohmian mechanics)

Value definiteness: then some observables must be value
indefinite and thus the associated measurement indeterministic

This last possibility only shows failure of complete determinism,
whereas the E-E link posits that all non-eigenstate measurements are
indeterministic

Can this gap be tightened, or must one simply appeal to
symmetry?
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A Digression on Contextuality

“Contextuality” traditionally taken to mean the impossibility of a
noncontextual hidden variable theory

Must VI observables really be contextual, or is indeterminism an
escape path?

Spekkens and co. consider a more general operational approach
to (non)contextuality applicable to indeterministic hidden
variable theories, mixed states and POVMs to counter this

Kochen-Specker Theorem shows impossibility of “outcome
deterministic” measurement noncontextuality

Since we are focusing on the implications for determinism, we will not
adopt this approach here

Could also demand that value assignments reproduce quantum
mechanics: tr[ρP ] =

∑
λ p(λ)vλ(P )

A. A. Abbott Kochen-Specker Theorem & Value (In)Definiteness 10 / 30



How Much Value Indefiniteness?

Can one show that particular observables must be value indefinite?

We need to weaken the assumptions we make first

For any set of observables O can clearly always find a state |ψ〉
such that we expect some observables in O to be value definite

If system is in state |ψ〉, we should have
v(Pψ) = 1

The “safe” direction of the
eigenvalue-eigenstate link

If an observable Pψ has v(Pψ) = 1, can
any incompatible Pφ be shown to be
value indefinite?

C1 C2

C3

C5

C6

C7

Pψ
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Partial Value Assignment Functions

In focusing on value indefiniteness, we only assume definite values
behave noncontextuality: we make no assumption about the
behaviour of value indefinite observables

Partial (noncontextual) value assignment functions

A partial value assignment function is a value assignment function
v : O → {0, 1} that is undefined on some observables P ∈ O.

v(P ) undefined if P is value indefinite

Value definite observables must be noncontextual as before
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Admissibility

How should the condition that for all C ⊂ O,
∑

P∈C v(P ) = 1 be
generalised when contexts may contain value indefinite observables?

If the value definiteness of an observable P allows the values of
other compatible observables to be “predicted with certainty”,
then those observables should also be value definite

Admissibility of v

A (partial) value assignment function v is admissible if for every
context C ⊂ O:

(a) if there exists a P ∈ C with v(P ) = 1, then v(P ′) = 0 for all
P ′ ∈ C \ {P};

(b) if there exists a P ∈ C with v(P ′) = 0 for all P ′ ∈ C \ {P}, then
v(P ) = 1.
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Example

Admissibility provides a weaker way to deduce value definiteness of
observables

Example: Can we have v(Pψ) = 1 and Pφ value definite?

Pψ

Pφ
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Localising Value Indefiniteness

Strong Kochen-Specker Theorem

Let n ≥ 3. If an observable P on Cn is assigned the value 1, then no
other incompatible observable can be consistently assigned a definite
value at all – i.e., is value indefinite.

If O is finite then it clearly must depend on both |ψ〉 and |φ〉

We prove in 3 steps:

1. We first prove the explicit case that |〈ψ|φ〉| = 1√
2

.

2. We prove a reduction for 0 < |〈ψ|φ〉| < 1√
2

to the first case.

3. We prove a reduction for the last case of 1√
2
< |〈ψ|φ〉| < 1.
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Explicit Case

The Greechie diagram below is realisable for |〈ψ|φ〉| = 1√
2

.

Assuming v(Pψ) = v(Pφ) = 1, we derive a contradiction:

Pφ

Pψ
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Constructive Reductions

This shows some value indefinite observables can indeed be identified:

Localised Value Indefiniteness

If |〈ψ|φ〉| = 1√
2

and v(Pψ) = 1 then Pφ must be value indefinite

under any admissible value assignment function.

Are there finite Greechie diagrams that allow any Pφ with
0 < |〈ψ|φ〉| < 1 to be shown to be value indefinite?

In general, Greechie diagrams realisable for a many sets of
observables

We were unable to find any simple such example

We thus need reductions:

For any |φ〉, construct a set of observables containing Pψ, Pφ and
Pξ with |〈ψ|ξ〉| = 1√

2
such that if v(Pψ) = 1 and Pφ value

definite, then Pξ must be value definite too
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First Reduction: Contraction

Contraction Lemma

Given |a〉 , |b〉 ∈ C3 and z ∈ C with 0 < |〈a|b〉| < |z| < 1 there exists
a |c〉 with 〈a|c〉 = z and a set of observables O ⊃ {Pa, Pb, Pc} such
that any admissible value assignment function with
v(Pa) = v(Pb) = 1 must have v(Pc) = 1 also.

The simplest Greechie diagram with this property is:

Pb

Pc

Pa
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First Reduction: Contraction

Let p = 〈a|b〉, |a〉 = (0, 0, 1) and |b〉 = (
√
1− p2, 0, p)

Requiring 〈a|α〉 = 〈b|β〉 = 〈α|β〉 = 〈α|c〉 = 〈β|c〉 = 0 one finds

|c±〉 = (x,±
√
1− x2 − z2, z) with x =

p(1− z2)
z
√
1− p2

|c±〉 is closer to both |a〉 and |b〉: |〈a|b〉| < |〈a|c±〉| < 1 and
|〈a|b〉| < |〈b|c±〉| < 1

Pb

Pβ

Pc
Pα

Pa
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First Reduction: Contraction

Corollary

If v(Pψ) = v(Pφ) = 1 and 0 < |〈ψ|φ〉| < 1√
2

, then we can find a |ξ〉
with 〈ψ|ξ〉 = 1√

2
and v(Pξ) = 1 under any admissible v.

The orthogonality relation used in the Contraction Lemma is
only nontrivial “building block” for diagrams “forcing” value
definiteness

Forcing the value definiteness of a |φ〉 with |〈ψ|φ〉| close to 1
more difficult

No single diagram appears sufficient
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Second Reduction: Expansion

Expansion Lemma

Given |a〉 , |b〉 ∈ C3 with 1
3 < |〈a|b〉| < 1 there exists |c〉 , |d〉 with

0 < |〈c|d〉| < |〈a|b〉| and a set of observables O ⊃ {Pa, Pb, Pc, Pd}
such that any admissible v with v(Pa) = v(Pb) = 1 must have
v(Pc) = v(Pd) = 1.

Pb

Pc

Pa

Pd
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Second Reduction: Expansion

Taking |c〉 and |d〉 as the |c±〉 vectors from the previous lemma with z
chosen so that |〈a|c±〉| = |〈b|c±〉| one can verify that

|〈c|d〉| = 3− 4

|〈a|b〉|+ 1

which for |〈a|b〉| > 1
3 is positive and |〈c|d〉| < |〈a|b〉| as desired.

For |〈a|b〉| close to 1 the difference |〈a|b〉| − |〈c|d〉| is small: one
must iterate the procedure the procedure to obtain a large
enough angle between |c〉 and |d〉
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Second Reduction: Expansion

Iteration Lemma

Given |a〉 , |b〉 ∈ C3 with 1
3 < |〈a|b〉| < 1 there exists |c〉 , |d〉 with

0 < |〈c|d〉| ≤ 1
3 and a set of observables O ⊃ {Pa, Pb, Pc, Pd} such

that any admissible v with v(Pa) = v(Pb) = 1 must have
v(Pc) = v(Pd) = 1.
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Completing the Proof

Non-convergence to a value greater than 1/3 proved by noting

D(u) := u−
(
3− 4

u+ 1

)
decreasing on u ∈ (13 , 1).

Note that |〈a|b〉| − |〈c|d〉| = D(|〈a|b〉|), etc.

Corollary

If v(Pψ) = v(Pφ) = 1 and 0 < 1√
2
< |〈ψ|φ〉|, then we can find a |ξ〉

with 〈ψ|ξ〉 = 1√
2

and v(Pξ) = 1 under any admissible v.
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Completing the Proof

To complete the proof, need to show v(Pξ) = 0 also leads to a
contradiction

It is easy to see that v(Pφ) = 0 implies v(Pφ′) = 1 for some |φ′〉

Pφ Pφ′

Pψ

For any given Pφ incompatible with Pψ, the reductions give
constructively a finite set of observables O containing Pψ and Pφ
with the desired properties
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Interpreting the Result

Eigenstate Value Definiteness

If a system in in state |ψ〉, then v(Pψ) = 1 for any faithful value
assignment function.

Interpretation

If a system is in a state |ψ〉, then the result of measuring an
observable A is indeterministic unless |ψ〉 is an eigenstate of A.

We assume only that Einstein-type “elements of physical reality”
must be noncontextual

Contextual hidden variables can’t be ruled out

We assume one direction of the E-E link and, under this
assumption, prove the other

Quantum states must be maximally value indefinite
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Experimental Testability

Noncontextuality inequalities have been crucial in making
contextuality operationally accessible

〈A1A2〉+ 〈A2A3〉+ 〈A3A4〉+ 〈A4A5〉+ 〈A5A1〉 ≥ −3

Derived assuming every observable is noncontextually value
definite

Quantum correspondence not enforced
Admissibility crucial to our argument

State independent inequalities violated by any state

Ensuring one observable in inequality corresponds to prepared
state is operationally infeasible
Operationally can only use mixed states and POVMs

Assigning definite values to POVMs problematic, and can’t
appeal to eigenstate value definiteness
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Operational Notions of Contextuality

Spekkens showed how to generalise noncontextuality to operational
theories

Operationally equivalent measurements and preparations should
be ontologically equivalent

One motivation: avoid concluding indeterminism instead of
contextuality

We are precisely interested in indeterminism

Can we draw conclusions about (non)contextuality of value indefinite
observables?

vλ(P,C) ∈ {0, 1, undefined} → ξ(k|PC , λ) ∈ [0, 1]

vλ(P,C) ∈ {0, 1} =⇒ ξ(vλ(P,C)|PC , λ) = 1

Correspondence with QM: 〈ψ|P |ψ〉 =
∑

λ ξ(1|PC , λ)µ(λ|ψ)
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What about contextuality then?

For a given state |ψ〉 can always assign all value indefinite P the
noncontextual probability

ξ(1|P, λ) = 〈ψ|P |ψ〉

so measurement noncontextuality always possible1

We show no P incompatible with Pψ can have ξ(1|P, λ) ∈ {0, 1}
assuming measurement NC

Implied by Gleason’s theorem also

Preparation noncontextuality =⇒ outcome determinism =⇒
contradiction with measurement noncontextuality

Do any weaker assumptions on operational noncontextuality
imply our assumptions?

1
R. Spekkens, PRA 71, 052108 (2005).
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Summary

The Strong Kochen-Specker Theorem allows value indefinite
observables to be “localised”

Shows the extent of indeterminism (while KS shows its existence)

Important for understanding quantum randomness, where
individual measurements should be indeterministic

Doesn’t constitute randomness in-and-of itself: quantum
randomness is unpredictability that can be seen as arising from
this indeterminism

Helps clarify status of quantum indeterminism in QM by bridging the
gap between Bell/KS Theorems and the E-E link

Significance for operational approaches to contextuality remains
to be clarified
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