Localising Value Indefiniteness with the (Strong) Kochen-Specker Theorem

Alastair A. Abbott

joint work with C. S. Calude and K. Svozil

Institut Néel (CNRS & Université Grenoble Alpes), Grenoble, France

Zurich, 23 June 2017

Quantum Indeterminism and the Eigenstate-Eigenvalue Link

Kochen-Specker Theorem & Value (In)Definiteness What can we conclude from the KS Theorem?

Localising Value Indefiniteness Partial VI and Admissibility A Stronger KS Theorem

Value Indefiniteness and Contextuality

Quantum mechanics is *formally* an indeterministic theory

Born rule

Probability of obtaining the outcome 1 when measuring $P_{\phi} = |\phi\rangle\langle\phi|$ on a state $|\psi\rangle$ is $\Pr(\phi \mid \psi) = \langle\psi|P_{\phi} \mid\psi\rangle$.

However, debate about quantum measurement centres on the ontological status of the Born rule

- Often interpreted as an objective probability distribution implying quantum indeterminism
 - Advantage of QRNGs, for example, often attributed to such "intrinsic randomness"
- Born: "I myself am inclined to give up determinism in the world of atoms."

Eigenvalue–Eigenstate link

A system in a state $|\psi\rangle$ has a definite property of an observable A if and only if $|\psi\rangle$ is an eigenstate of A.

- The "if" direction is relatively uncontentious
- \blacksquare The other direction assumes quantum indeterminism if the Born rule gives probabilities in (0,1)
- We will say an observable is value definite if such a property exists (for a given |ψ⟩); otherwise it is value indefinite

Why is the E-E link so commonly adopted?

No-go theorems rule out large classes of classic alternatives

Eigenvalue–Eigenstate link

A system in a state $|\psi\rangle$ has a definite property of an observable A if and only if $|\psi\rangle$ is an eigenstate of A.

- The "if" direction is relatively uncontentious
- \blacksquare The other direction assumes quantum indeterminism if the Born rule gives probabilities in (0,1)
- We will say an observable is value definite if such a property exists (for a given |ψ⟩); otherwise it is value indefinite

Why is the E-E link so commonly adopted?

No-go theorems rule out large classes of classic alternatives

No-Go Theorems: Bell

Local Realism

Any hidden variables must only have local influences:

$$p(x,y|a,b) = \int_{\lambda} p(a|x,\lambda) p(b|y,\lambda) p(\lambda) d\lambda$$

Bell's Theorem

No local hidden variable model can reproduce the statistical predictions of quantum mechanics.

- Bell's Theorem rules out deterministic local theories, but also indeterministic ones
 - This shows a deeper nonlocal aspect of QM, irrespective of status of determinism

Kochen-Specker Theorem

No deterministic noncontextual hidden variable theory for quantum states in $d\geq 3$ Hilbert space.

- Such theories are *logically* (rather than statistically) inconsistent with QM
 - Can be turned into testable, statistical contradictions
- State independent
- Standard formulation more directly addresses deterministic HVs
 - Tradeoff is dependence on quantum logical structure

I will look more carefully about what can be deduced about (in)determinism from the Kochen-Specker Theorem

The Kochen-Specker Theorem (Informal)

As is common we will restrict ourselves to rank-1 projection observables $P_\psi = |\psi\rangle \langle \psi|$

Context

A *context* in \mathbb{C}^n is a set of n mutually compatible (i.e., commuting) observables.

Kochen-Specker Theorem (Informal)

In dimension $d \ge 3$ Hilbert space there is no hidden variable theory that satisfies the following criteria:

- 1. Every observable is assigned a definite value of 0 or 1 specifying the measurement outcome;
- 2. These definite values depend only on the observable in question and not the context that it may be measured in;
- 3. Exactly one observable in each context is assigned the value 1.

The Kochen-Specker Theorem (Informal)

As is common we will restrict ourselves to rank-1 projection observables $P_\psi = |\psi\rangle \langle \psi|$

Context

A *context* in \mathbb{C}^n is a set of n mutually compatible (i.e., commuting) observables.

Kochen-Specker Theorem (Informal)

In dimension $d \ge 3$ Hilbert space there is no hidden variable theory that satisfies the following criteria:

- 1. Every observable is assigned a definite value of 0 or 1 specifying the measurement outcome;
- 2. These definite values depend only on the observable in question and not the context that it may be measured in;
- 3. Exactly one observable in each context is assigned the value 1.

We formalise such a HVT with a noncontextual value assignment function $v: \mathcal{O} \to \{0, 1\}$, where \mathcal{O} is a set of observables

Kochen-Specker Theorem

There exists a finite set of observables O in dimension $d \ge 3$ Hilbert space such that there is no value assignment v satisfying:

- 1. Value definiteness: v is total, i.e. v(P) is defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only, i.e. $v(P,C_1) = v(P,C_2) = v(P)$ for all contexts $C_1, C_2 \subset \mathcal{O}$ containing P;
- 3. Quantum correspondence: For every context $C\subset \mathcal{O}$ we have $\sum_{P\in C}v(P)=1.$

Kochen-Specker Theorem (concise)

What Does a Contradiction Prove?

What can we conclude from the Kochen-Specker Theorem? Either we reject:

- "Quantum correspondence" (∑_{P∈C} v(P) = 1): but then quantum predictions for compatible measurements are violated
- Noncontextuality: we obtain a contextual hidden variable theories
 - Logically consistent with quantum mechanics and can be physically motivated (e.g. Bohmian mechanics)
- Value definiteness: then *some* observables must be value indefinite and thus the associated measurement indeterministic

This last possibility only shows failure of complete determinism, whereas the E-E link posits that all non-eigenstate measurements are indeterministic

Can this gap be tightened, or must one simply appeal to symmetry?

What Does a Contradiction Prove?

What can we conclude from the Kochen-Specker Theorem? Either we reject:

- "Quantum correspondence" (∑_{P∈C} v(P) = 1): but then quantum predictions for compatible measurements are violated
- Noncontextuality: we obtain a contextual hidden variable theories
 - Logically consistent with quantum mechanics and can be physically motivated (e.g. Bohmian mechanics)
- Value definiteness: then *some* observables must be value indefinite and thus the associated measurement indeterministic

This last possibility only shows failure of complete determinism, whereas the E-E link posits that all non-eigenstate measurements are indeterministic

Can this gap be tightened, or must one simply appeal to symmetry?

A Digression on Contextuality

"Contextuality" traditionally taken to mean the impossibility of a noncontextual hidden variable theory

- Must VI observables really be contextual, or is indeterminism an escape path?
- Spekkens and co. consider a more general operational approach to (non)contextuality applicable to indeterministic hidden variable theories, mixed states and POVMs to counter this
 - Kochen-Specker Theorem shows impossibility of "outcome deterministic" measurement noncontextuality

Since we are focusing on the implications for determinism, we will not adopt this approach here

• Could also demand that value assignments reproduce quantum mechanics: $tr[\rho P] = \sum_{\lambda} p(\lambda)v_{\lambda}(P)$

How Much Value Indefiniteness?

Can one show that particular observables must be value indefinite?

- We need to weaken the assumptions we make first
- For any set of observables \mathcal{O} can clearly always find a state $|\psi\rangle$ such that we expect some observables in \mathcal{O} to be value definite
- If system is in state $|\psi\rangle$, we should have $v(P_{\psi}) = 1$
 - The "safe" direction of the eigenvalue-eigenstate link
- If an observable P_ψ has v(P_ψ) = 1, can any incompatible P_φ be shown to be value indefinite?

How Much Value Indefiniteness?

Can one show that particular observables must be value indefinite?

- We need to weaken the assumptions we make first
- For any set of observables \mathcal{O} can clearly always find a state $|\psi\rangle$ such that we expect some observables in \mathcal{O} to be value definite
- If system is in state $|\psi\rangle$, we should have $v(P_\psi)=1$
 - The "safe" direction of the eigenvalue-eigenstate link
- If an observable P_ψ has v(P_ψ) = 1, can any incompatible P_φ be shown to be value indefinite?

How Much Value Indefiniteness?

Can one show that particular observables must be value indefinite?

- We need to weaken the assumptions we make first
- For any set of observables $\mathcal O$ can clearly always find a state $|\psi\rangle$ such that we expect some observables in $\mathcal O$ to be value definite
- If system is in state $|\psi\rangle,$ we should have $v(P_\psi)=1$
 - The "safe" direction of the eigenvalue-eigenstate link
- If an observable P_{ψ} has $v(P_{\psi}) = 1$, can any incompatible P_{ϕ} be shown to be value indefinite?

In focusing on value indefiniteness, we only assume definite values behave noncontextuality: we make no assumption about the behaviour of value indefinite observables

Partial (noncontextual) value assignment functions

A partial value assignment function is a value assignment function $v : \mathcal{O} \to \{0, 1\}$ that is undefined on some observables $P \in \mathcal{O}$.

- v(P) undefined if P is value indefinite
- Value definite observables must be noncontextual as before

Admissibility

How should the condition that for all $C \subset O$, $\sum_{P \in C} v(P) = 1$ be generalised when contexts may contain value indefinite observables?

If the value definiteness of an observable P allows the values of other compatible observables to be "predicted with certainty", then those observables should also be value definite

Admissibility of v

A (partial) value assignment function v is admissible if for every context $C \subset \mathcal{O}$:

- (a) if there exists a $P \in C$ with v(P) = 1, then v(P') = 0 for all $P' \in C \setminus \{P\}$;
- (b) if there exists a $P \in C$ with v(P') = 0 for all $P' \in C \setminus \{P\}$, then v(P) = 1.

How should the condition that for all $C \subset O$, $\sum_{P \in C} v(P) = 1$ be generalised when contexts may contain value indefinite observables?

If the value definiteness of an observable P allows the values of other compatible observables to be "predicted with certainty", then those observables should also be value definite

Admissibility of v

A (partial) value assignment function v is admissible if for every context $C \subset \mathcal{O}$:

- (a) if there exists a $P \in C$ with v(P) = 1, then v(P') = 0 for all $P' \in C \setminus \{P\}$;
- (b) if there exists a $P \in C$ with v(P') = 0 for all $P' \in C \setminus \{P\}$, then v(P) = 1.

Admissibility provides a weaker way to deduce value definiteness of observables

Admissibility provides a weaker way to deduce value definiteness of observables

Admissibility provides a weaker way to deduce value definiteness of observables

Admissibility provides a weaker way to deduce value definiteness of observables

Admissibility provides a weaker way to deduce value definiteness of observables

Admissibility provides a weaker way to deduce value definiteness of observables

Admissibility provides a weaker way to deduce value definiteness of observables

Strong Kochen-Specker Theorem

Let $n \geq 3$. If an observable P on \mathbb{C}^n is assigned the value 1, then no other incompatible observable can be consistently assigned a definite value at all – i.e., is value indefinite.

If ${\cal O}$ is finite then it clearly must depend on both $\ket{\psi}$ and $\ket{\phi}$

We prove in 3 steps:

- 1. We first prove the explicit case that $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.
- 2. We prove a reduction for $0 < |\langle \psi | \phi
 angle| < rac{1}{\sqrt{2}}$ to the first case.
- 3. We prove a reduction for the last case of $rac{1}{\sqrt{2}} < |\langle \psi | \phi
 angle| < 1.$
Strong Kochen-Specker Theorem

Let $n \geq 3$ and $|\psi\rangle$, $|\phi\rangle \in \mathbb{C}^n$ be states such that $0 < |\langle \psi | \phi \rangle| < 1$. Then there is a finite set of observables \mathcal{O} containing P_{ψ} and P_{ϕ} for which there is no admissible value assignment function on \mathcal{O} such that $v(P_{\psi}) = 1$ and P_{ϕ} is value definite.

If ${\cal O}$ is finite then it clearly must depend on both $|\psi
angle$ and $|\phi
angle$

We prove in 3 steps:

- 1. We first prove the explicit case that $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.
- 2. We prove a reduction for $0 < |\langle \psi | \phi \rangle| < \frac{1}{\sqrt{2}}$ to the first case.
- 3. We prove a reduction for the last case of $\frac{1}{\sqrt{2}} < |\langle \psi | \phi \rangle| < 1$.

Strong Kochen-Specker Theorem

Let $n \geq 3$ and $|\psi\rangle$, $|\phi\rangle \in \mathbb{C}^n$ be states such that $0 < |\langle \psi | \phi \rangle| < 1$. Then there is a finite set of observables \mathcal{O} containing P_{ψ} and P_{ϕ} for which there is no admissible value assignment function on \mathcal{O} such that $v(P_{\psi}) = 1$ and P_{ϕ} is value definite.

If ${\cal O}$ is finite then it clearly must depend on both $|\psi
angle$ and $|\phi
angle$

We prove in 3 steps:

- 1. We first prove the explicit case that $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.
- 2. We prove a reduction for $0 < |\langle \psi | \phi \rangle| < \frac{1}{\sqrt{2}}$ to the first case.
- 3. We prove a reduction for the last case of $\frac{1}{\sqrt{2}} < |\langle \psi | \phi \rangle| < 1$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Similarly for $v(P_{\psi}) = 1$, $v(P_{\phi}) = 0$ we get a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Similarly for $v(P_{\psi}) = 1$, $v(P_{\phi}) = 0$ we get a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Similarly for $v(P_{\psi}) = 1$, $v(P_{\phi}) = 0$ we get a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$. Similarly for $v(P_{\psi}) = 1$, $v(P_{\phi}) = 0$ we get a contradiction:

Constructive Reductions

This shows some value indefinite observables can indeed be identified:

Localised Value Indefiniteness

If $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$ and $v(P_{\psi}) = 1$ then P_{ϕ} must be value indefinite under any admissible value assignment function.

Are there finite Greechie diagrams that allow any P_ϕ with $0<|\langle\psi|\phi\rangle|<1$ to be shown to be value indefinite?

- In general, Greechie diagrams realisable for a many sets of observables
- We were unable to find any simple such example
- We thus need reductions:
 - For any $|\phi\rangle$, construct a set of observables containing P_{ψ} , P_{ϕ} and P_{ξ} with $|\langle\psi|\xi\rangle| = \frac{1}{\sqrt{2}}$ such that if $v(P_{\psi}) = 1$ and P_{ϕ} value definite, then P_{ξ} must be value definite too

Constructive Reductions

This shows some value indefinite observables can indeed be identified:

Localised Value Indefiniteness

If $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$ and $v(P_{\psi}) = 1$ then P_{ϕ} must be value indefinite under any admissible value assignment function.

Are there finite Greechie diagrams that allow any P_ϕ with $0<|\langle\psi|\phi\rangle|<1$ to be shown to be value indefinite?

- In general, Greechie diagrams realisable for a many sets of observables
- We were unable to find any simple such example
- We thus need reductions:
 - For any $|\phi\rangle$, construct a set of observables containing P_{ψ} , P_{ϕ} and P_{ξ} with $|\langle \psi | \xi \rangle| = \frac{1}{\sqrt{2}}$ such that if $v(P_{\psi}) = 1$ and P_{ϕ} value definite, then P_{ξ} must be value definite too

Constructive Reductions

This shows some value indefinite observables can indeed be identified:

Localised Value Indefiniteness

If $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$ and $v(P_{\psi}) = 1$ then P_{ϕ} must be value indefinite under any admissible value assignment function.

Are there finite Greechie diagrams that allow any P_ϕ with $0<|\langle\psi|\phi\rangle|<1$ to be shown to be value indefinite?

- In general, Greechie diagrams realisable for a many sets of observables
- We were unable to find any simple such example
- We thus need reductions:
 - For any $|\phi\rangle$, construct a set of observables containing P_{ψ} , P_{ϕ} and P_{ξ} with $|\langle\psi|\xi\rangle| = \frac{1}{\sqrt{2}}$ such that if $v(P_{\psi}) = 1$ and P_{ϕ} value definite, then P_{ξ} must be value definite too

Contraction Lemma

Given $|a\rangle$, $|b\rangle \in \mathbb{C}^3$ and $z \in \mathbb{C}$ with $0 < |\langle a|b\rangle| < |z| < 1$ there exists a $|c\rangle$ with $\langle a|c\rangle = z$ and a set of observables $\mathcal{O} \supset \{P_a, P_b, P_c\}$ such that any admissible value assignment function with $v(P_a) = v(P_b) = 1$ must have $v(P_c) = 1$ also.

The simplest Greechie diagram with this property is:

Contraction Lemma

Given $|a\rangle$, $|b\rangle \in \mathbb{C}^3$ and $z \in \mathbb{C}$ with $0 < |\langle a|b\rangle| < |z| < 1$ there exists a $|c\rangle$ with $\langle a|c\rangle = z$ and a set of observables $\mathcal{O} \supset \{P_a, P_b, P_c\}$ such that any admissible value assignment function with $v(P_a) = v(P_b) = 1$ must have $v(P_c) = 1$ also.

The simplest Greechie diagram with this property is:

Contraction Lemma

Given $|a\rangle$, $|b\rangle \in \mathbb{C}^3$ and $z \in \mathbb{C}$ with $0 < |\langle a|b\rangle| < |z| < 1$ there exists a $|c\rangle$ with $\langle a|c\rangle = z$ and a set of observables $\mathcal{O} \supset \{P_a, P_b, P_c\}$ such that any admissible value assignment function with $v(P_a) = v(P_b) = 1$ must have $v(P_c) = 1$ also.

The simplest Greechie diagram with this property is:

• Let $p = \langle a|b\rangle$, $|a\rangle = (0, 0, 1)$ and $|b\rangle = (\sqrt{1 - p^2}, 0, p)$ • Requiring $\langle a|a\rangle = \langle b|\beta\rangle = \langle a|\beta\rangle = \langle a|c\rangle = \langle \beta|c\rangle = 0$ one finds $|c_{\pm}\rangle = (x, \pm \sqrt{1 - x^2 - z^2}, z)$ with $x = \frac{p(1 - z^2)}{z\sqrt{1 - p^2}}$ • $|c_{\pm}\rangle$ is closer to both $|a\rangle$ and $|b\rangle$: $|\langle a|b\rangle| < |\langle a|c_{\pm}\rangle| < 1$ and $|\langle a|b\rangle| < |\langle b|c_{\pm}\rangle| < 1$

Corollary

If $v(P_{\psi}) = v(P_{\phi}) = 1$ and $0 < |\langle \psi | \phi \rangle| < \frac{1}{\sqrt{2}}$, then we can find a $|\xi\rangle$ with $\langle \psi | \xi \rangle = \frac{1}{\sqrt{2}}$ and $v(P_{\xi}) = 1$ under any admissible v.

- The orthogonality relation used in the Contraction Lemma is only nontrivial "building block" for diagrams "forcing" value definiteness
- \blacksquare Forcing the value definiteness of a $|\phi\rangle$ with $|\langle\psi|\phi\rangle|$ close to 1 more difficult
- No single diagram appears sufficient

Corollary

If $v(P_{\psi}) = v(P_{\phi}) = 1$ and $0 < |\langle \psi | \phi \rangle| < \frac{1}{\sqrt{2}}$, then we can find a $|\xi\rangle$ with $\langle \psi | \xi \rangle = \frac{1}{\sqrt{2}}$ and $v(P_{\xi}) = 1$ under any admissible v.

- The orthogonality relation used in the Contraction Lemma is only nontrivial "building block" for diagrams "forcing" value definiteness
- \blacksquare Forcing the value definiteness of a $|\phi\rangle$ with $|\langle\psi|\phi\rangle|$ close to 1 more difficult
- No single diagram appears sufficient

Expansion Lemma

Expansion Lemma

Taking $|c\rangle$ and $|d\rangle$ as the $|c_{\pm}\rangle$ vectors from the previous lemma with z chosen so that $|\langle a|c_{\pm}\rangle|=|\langle b|c_{\pm}\rangle|$ one can verify that

$$|\langle c|d\rangle| = 3 - \frac{4}{|\langle a|b\rangle| + 1}$$

which for $|\langle a|b\rangle| > \frac{1}{3}$ is positive and $|\langle c|d\rangle| < |\langle a|b\rangle|$ as desired.

• For $|\langle a|b\rangle|$ close to 1 the difference $|\langle a|b\rangle| - |\langle c|d\rangle|$ is small: one must iterate the procedure the procedure to obtain a large enough angle between $|c\rangle$ and $|d\rangle$

Iteration Lemma

Iteration Lemma

Second Reduction: Expansion

Iteration Lemma

Given $|a\rangle$, $|b\rangle \in \mathbb{C}^3$ with $\frac{1}{3} < |\langle a|b\rangle| < 1$ there exists $|c\rangle$, $|d\rangle$ with $0 < |\langle c|d\rangle| \le \frac{1}{3}$ and a set of observables $\mathcal{O} \supset \{P_a, P_b, P_c, P_d\}$ such that any admissible v with $v(P_a) = v(P_b) = 1$ must have $v(P_c) = v(P_d) = 1$.

Non-convergence to a value greater than 1/3 proved by noting

$$D(u) := u - \left(3 - \frac{4}{u+1}\right)$$

decreasing on $u \in (\frac{1}{3}, 1)$.

• Note that $|\langle a|b\rangle| - |\langle c|d\rangle| = D(|\langle a|b\rangle|)$, etc.

Corollary

If $v(P_{\psi}) = v(P_{\phi}) = 1$ and $0 < \frac{1}{\sqrt{2}} < |\langle \psi | \phi \rangle|$, then we can find a $|\xi\rangle$ with $\langle \psi | \xi \rangle = \frac{1}{\sqrt{2}}$ and $v(P_{\xi}) = 1$ under any admissible v.

Non-convergence to a value greater than 1/3 proved by noting

$$D(u) := u - \left(3 - \frac{4}{u+1}\right)$$

decreasing on $u \in (\frac{1}{3}, 1)$.

• Note that $|\langle a|b\rangle| - |\langle c|d\rangle| = D(|\langle a|b\rangle|)$, etc.

Corollary

If $v(P_{\psi}) = v(P_{\phi}) = 1$ and $0 < \frac{1}{\sqrt{2}} < |\langle \psi | \phi \rangle|$, then we can find a $|\xi\rangle$ with $\langle \psi | \xi \rangle = \frac{1}{\sqrt{2}}$ and $v(P_{\xi}) = 1$ under any admissible v.

Completing the Proof

To complete the proof, need to show $v(P_{\xi})=0$ also leads to a contradiction

It is easy to see that $v(P_{\phi}) = 0$ implies $v(P_{\phi'}) = 1$ for some $|\phi'\rangle$

For any given P_{ϕ} incompatible with P_{ψ} , the reductions give constructively a *finite* set of observables \mathcal{O} containing P_{ψ} and P_{ϕ} with the desired properties

A. A. Abbott

Completing the Proof

To complete the proof, need to show $v(P_{\xi})=0$ also leads to a contradiction

It is easy to see that $v(P_{\phi})=0$ implies $v(P_{\phi'})=1$ for some $|\phi'\rangle$

For any given P_{ϕ} incompatible with P_{ψ} , the reductions give constructively a *finite* set of observables \mathcal{O} containing P_{ψ} and P_{ϕ} with the desired properties

A. A. Abbott

Completing the Proof

To complete the proof, need to show $v(P_{\xi})=0$ also leads to a contradiction

It is easy to see that $v(P_{\phi})=0$ implies $v(P_{\phi'})=1$ for some $|\phi'\rangle$

For any given P_{ϕ} incompatible with P_{ψ} , the reductions give constructively a *finite* set of observables \mathcal{O} containing P_{ψ} and P_{ϕ} with the desired properties

A. A. Abbott

Interpreting the Result

Eigenstate Value Definiteness

If a system in in state $|\psi\rangle$, then $v(P_\psi)=1$ for any faithful value assignment function.

Interpretation

If a system is in a state $|\psi\rangle$, then the result of measuring an observable A is indeterministic unless $|\psi\rangle$ is an eigenstate of A.

- We assume only that Einstein-type "elements of physical reality" must be noncontextual
 - Contextual hidden variables can't be ruled out
- We assume one direction of the E-E link and, under this assumption, prove the other
- Quantum states must be maximally value indefinite

Noncontextuality inequalities have been crucial in making contextuality operationally accessible

$$\langle A_1 A_2 \rangle + \langle A_2 A_3 \rangle + \langle A_3 A_4 \rangle + \langle A_4 A_5 \rangle + \langle A_5 A_1 \rangle \geq -3$$

- Derived assuming every observable is noncontextually value definite
 - Quantum correspondence not enforced
 - Admissibility crucial to our argument
- State independent inequalities violated by any state
 - Ensuring one observable in inequality corresponds to prepared state is operationally infeasible
 - Operationally can only use mixed states and POVMs
 - Assigning definite values to POVMs problematic, and can't appeal to eigenstate value definiteness

Noncontextuality inequalities have been crucial in making contextuality operationally accessible

$$\langle A_1A_2\rangle+\langle A_2A_3\rangle+\langle A_3A_4\rangle+\langle A_4A_5\rangle+\langle A_5A_1\rangle\geq -3$$

- Derived assuming every observable is noncontextually value definite
 - Quantum correspondence not enforced
 - Admissibility crucial to our argument
- State independent inequalities violated by any state
 - Ensuring one observable in inequality corresponds to prepared state is operationally infeasible
 - Operationally can only use mixed states and POVMs
 - Assigning definite values to POVMs problematic, and can't appeal to eigenstate value definiteness

Operational Notions of Contextuality

Spekkens showed how to generalise noncontextuality to operational theories

- Operationally equivalent measurements and preparations should be ontologically equivalent
- One motivation: avoid concluding indeterminism instead of contextuality
 - We are precisely interested in indeterminism

Can we draw conclusions about (non)contextuality of value indefinite observables?

 $v_{\lambda}(P,C) \in \{0,1, \mathsf{undefined}\} \rightarrow \xi(k|P_C,\lambda) \in [0,1]$

 $v_{\lambda}(P,C) \in \{0,1\} \implies \xi(v_{\lambda}(P,C)|P_C,\lambda) = 1$

• Correspondence with QM: $\langle \psi | P | \psi \rangle = \sum_{\lambda} \xi(1 | P_C, \lambda) \mu(\lambda | \psi)$

Operational Notions of Contextuality

Spekkens showed how to generalise noncontextuality to operational theories

- Operationally equivalent measurements and preparations should be ontologically equivalent
- One motivation: avoid concluding indeterminism instead of contextuality
 - We are precisely interested in indeterminism

Can we draw conclusions about (non)contextuality of value indefinite observables?

$$v_{\lambda}(P,C) \in \{0,1, \mathsf{undefined}\} \rightarrow \xi(k|P_C,\lambda) \in [0,1]$$

$$v_{\lambda}(P,C) \in \{0,1\} \implies \xi(v_{\lambda}(P,C)|P_C,\lambda) = 1$$

• Correspondence with QM: $\langle \psi | P | \psi \rangle = \sum_{\lambda} \xi(1 | P_C, \lambda) \mu(\lambda | \psi)$

For a given state $|\psi\rangle$ can always assign all value indefinite P the noncontextual probability

$$\xi(1|P,\lambda) = \langle \psi|P|\psi \rangle$$

so measurement noncontextuality always possible¹

- We show no P incompatible with P_ψ can have $\xi(1|P,\lambda)\in\{0,1\}$ assuming measurement NC
 - Implied by Gleason's theorem also

Preparation noncontextuality \implies outcome determinism \implies contradiction with measurement noncontextuality

Do any weaker assumptions on operational noncontextuality imply our assumptions?

¹R. Spekkens, PRA **71**, 052108 (2005).

For a given state $|\psi\rangle$ can always assign all value indefinite P the noncontextual probability

$$\xi(1|P,\lambda) = \langle \psi|P|\psi \rangle$$

so measurement noncontextuality always possible¹

- We show no P incompatible with P_ψ can have $\xi(1|P,\lambda)\in\{0,1\}$ assuming measurement NC
 - Implied by Gleason's theorem also

Do any weaker assumptions on operational noncontextuality imply our assumptions?

¹R. Spekkens, PRA **71**, 052108 (2005).

The Strong Kochen-Specker Theorem allows value indefinite observables to be "localised"

- Shows the *extent* of indeterminism (while KS shows its existence)
- Important for understanding quantum randomness, where individual measurements should be indeterministic
- Doesn't constitute randomness in-and-of itself: quantum randomness is unpredictability that can be seen as arising from this indeterminism

Helps clarify status of quantum indeterminism in QM by bridging the gap between Bell/KS Theorems and the E-E link

 Significance for operational approaches to contextuality remains to be clarified

- A. A. Abbott, C. S. Calude & K. Svozil. A variant of the Kochen-Specker theorem localising value indefiniteness, J. Math. Phys. 56, 102201 (2015).
- S. Kochen & E. Specker. The problem of hidden variables in quantum mechanics, J. Math. Mech. 17, 59 (1967).
- A. Cabello et al. Bell-Kochen-Specker Theorem: A proof with 18 vectors, Phys. Lett. A 212, 183 (1996).
- R. Spekkens. Contextuality for preparations, transformations, and unsharp measurements, Phys. Rev. A 71, 052108 (2005).
- R. Kunjwal & R. Spekkens. From the Kochen-Specker theorem to noncontextuality inequalities without assuming determinism, Phys. Rev. Lett. 115, 110403 (2015).