
 

 

 

 

 

 



 

 

 

"About your cat, Mr. Schrodinger—I have good news and bad news." 

 



 

Bohr 

“Atomic physics deprives of all meaning such inherent attributes as the idealization of classical physics would ascribe to such objects.” 

 

A Reconstruction of Quantum Mechanics, Foundations of Physics, (2015), p551. 
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A.Kolmogorov, “ Foundations of the Theory of Probability”    1933 

 

Probability theory is based on a probability measure, i.e. a function                                                       

                                             p: B ⟶ [0,1] 

with domain B a  Boolean σ-algebra, such that  

p(1) =1 

 p(Uai) = Σp(ai)   

for a1, a2,  … in B such that ai . aj =  0. i ≠ j 

In an experiment we measure a σ-algebra of properties of a system and the theory tells us how to compute the probability measure on it 

Quantum Mechanics: Born’s Rule.  Consider a system in a pure state given by the vector Ω and an observable A with a discrete spectrum 

 Let A = ∑ λi Pi  be the spectral decomposition of A. Then the probability that a measurement of A will give the value λk  is || Pk Ω  ||2,  

and the system after the measurement is in the state Pk Ω. (Projection Rule) 

The interaction algebra is the Boolean σ-algebra B generated by 

 {P1 , P2 , P3 …}. 
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The Born Rule defines a probability measure pΩ: B⟶ [0, 1]  given by 

pΩ(VPi ) = Σ||Pi Ω ||2
.  

The result of the experiment gives a truth value to the projections, say, Pk is true   and all other Pi are false   and hence to the interaction 

algebra B.                                                                    

 

 Different experiments on the system yield different Boolean σ-algebras.e.g. by varying the direction of the magnetic field in the Stern-Gerlach 

experiment on the spin 1 particle.  

 For a classical system, we measure intrinsic properties that the system possesses. Hence any two properties can be measured without 

disturbance, and thus the union of all the σ-algebras forms a  σ-algebra.               B(Ω) = σ-algebra of Borel sets of phase space Ω.                  

 

In Kochen-Specker 1967 we construct a quantum system with a family of Boolean algebras which cannot be imbedded into a single Boolean 

algebra. 

For spin 1 system Sx
2,Sy

2,Sz
2 commute and can be simultaneously measured. E.g. 

 Measure observable Sx
2-Sy

2 with spectral decomposition                                                                        (+1) Sx
2+(-1)Sy

2+(0)Sz
2 

With 8 element interaction algebra generated by  Sx
2,Sy

2,Sz
2. 
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There are 40 such observables whose interaction algebras cannot all be imbedded in a single Boolean σ- algebra. 

We replace the σ-algebra of classical intrinsic properties by the minimal structure needed to describe all the σ-algebras of measuring 

observables: the union of these σ-algebras. 

Given a family of Boolean σ-algebras, we call their union UB a Boolean σ-complex. 

  

For a Hilbert space ℋ a set of projections which is closed under countable products and orthogonal complement 1-P forms a Boolean σ-

algebra. The family of all such Boolean σ-algebras forms the        Boolean σ- complex Q(ℋ). 
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Realization of Q(ℋ) by Interferometry      

Mach-Zender Interferometer with phase shiifters 
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States 

 

Classical Mechanics B(Ω): A (mixed) state is a probability measure on the σ-algebra B(Ω). 

B(Ω) is the σ-algebra generated by the open sets of Phase space Ω. 

General Theory Q: A state of a system with a σ-complex Q is a probability measure on Q, i.e. a map  

                                       p: Q ⟶ [0,1] 

such that the restriction p∣B of p to any σ-algebra B in Q is a probability measure. 

Quantum Mechanics  For Q = Q(ℋ), there is a one-one correspondence between states p on Q(ℋ) and density operators (i.e. positive 

Hermitean operators of trace 1) w on ℋ such that  

                        p(x) = tr(wx), for all x ϵ Q. 
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Pure and Mixed States   

  The set of states is closed under the formation of convex linear combinations, i.e. if p1,p2, … are states then so is ∑ 𝑐ipi , for for positive    ci,  

with ∑ 𝑐I  = 1. The extreme points of the convex set of states of a system are those that cannot be written as a non-trivial convex combination 

of states of the system.                                                                                                                           

 General Theory Q:  A pure state of a system is an extreme point of the convex set of all states of the system. 

  If Q = B(Ω), then the pure states have the form 

                 p(s) ={  
1 if ω ϵ s
0 if ω ϵ s′

                                                                              

 for some ωϵ Ω. Hence, 

Classical Mechanics:  Assume Q = B(Ω). There is a one-one correspondence between pure states of B(Ω) and points in Ω. 

   Quantum Mechanics:  Assume Q = Q(ℋ). The pure states of Q(ℋ) are in one-one correspondence with the rank one projection operators or, 

equivalently, the rays of ℋ. 

 The state p is given by rank 1 projection P𝝍 onto the   one-dimensional subspace spanned by the unit vector ψ, so that P𝝍 = |ψ>< ψ| and                       

p(x) = tr(P𝝍x) = <ψ,xψ>. 
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State Preparation and Conditional Probability    

Classical Mechanics B(Ω): For every state p(x) on B(Ω) and every yϵB(Ω) such that p(y)≠0, the state conditioned on y is the state 

                              p(x ∣ y)  = p(x . y)/p(y). 

 

General Theory Q: Let p(x) be state on a σ-complex Q and y ϵ Q such that p(y)≠0. By a state conditioned on y, we mean a state p(x ∣ y)                                      

such that for every σ-algebra B in Q containing y and every x ϵ B, 

                p(x ∣ y)  = p(x . y)/p(y) 

                                                                                                                                                            Quantum Mechamics: Assume Q = Q(ℋ). For every 

state p(x) and element y in Q such that p(y) ≠ 0, there exists a unique state p(x ∣ y) conditioned on y.  

 If w is the density operator corresponding to the state p(x), then ywy/tr(ywy) is the density operator corresponding to state p(x | y). 

 

  The change of state from density operator w to to density operator ywy/tr(wy) is  the reduction called The Von Neumann-Lüder’s 

Projection Rule. Here it appears as the extrinsic counterpart of conditioning a probability to a given property.  
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Classical vs Quantum Conditioning 

 Let y = Σyi   where yi . yj = 0 for i  ≠ j. Then 

Classical Mechanics: p(x ∣y) = Σp(x|yi)p(yi|y). This rule is called The Law of  Total Probability. 

Quantum Mechanics: 

 p(x∣y) =  tr(ywyx)/tr(wy).                                                                                    

                   = tr(ΣyiwΣyix) = tr(Σi,jyiwyjx) = Σtr(yiwyix) + Σi≠jtr(yiwyjx)                                                                                                                                    

                   =  Σp(x|yi) p(yi|y)  + Σi≠jtr(yiwyjx). 

                                                    (interference term) 

 

Example: The Two Slit Experiment 

   yi = projection operator Pi  of position at slit i,  i =1,2.               

 x = projection operator Ps of position s at detection screen.     
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Observables 

 A classical observable is defined as a real-valued function f: Ω ⟶ℝ on the phase space Ω of the system. To avoid pathological, non-

measurable functions, f is assumed to be a Borel function, i.e. a function such that f-1(s) ϵ B(Ω), a Borel set in Ω, for every set s in the    σ-

algebra B(ℝ) of Borel sets generated by the open intervals of ℝ. 

The inverse function f-1: B(ℝ) ⟶ B(Ω) is easily seen to preserve the Boolean σ-operations, i.e. to be a homomorphism. Moreover, as we see 

below, this homomorphism allows us to recover the function f. 

Classical Mechanics B(Ω): An observable is a Borel function f: Ω ⟶ ℝ. 

There is a one-one correspondence between observables f and homomorphisms u: B(ℝ) ⟶ B(Ω), such that u = f-1. 

[i.e. maps satisfying u(s')=u(s)',   u(Usi) = Uu(si),   for all s,s1,s2,… in B(ℝ).]                

General Theory Q:  An observable u of a system with σ-algebra Q is a homomorphism  

                               u: B(ℝ) ⟶ Q  

 

 Quantum Mechanics:  Assume Q=Q(ℋ). Then there is a one-one correspondence between observables u: B(ℝ) ⟶ Q(ℋ) and Hermitean 

operators A such that, given u,  A=∫ 𝜆𝑑𝑃λ , where Pλ= u((∞, 𝜆]). 

  



 

10 

Symmetries     

Definition.  A symmetry of a σ-complex Q is an automorphism of Q, i.e.a  one-to-one transformation                                                                                                                                                         

σ: Q ⟶ Q                                                                            

of  Q onto Q such that 

                                       σ(a') = σ(a)'                                                                   and  for all σ-algebras B in Q and all a1,a2, … in B                                                       

                                    σ(Uai) = Uσ(ai).   

A symmetry σ defines a natural map p ⟶ pσ on the states of Q, namely,                                                                                                                                                                                                                                                                                                                                                                         

                         pσ(x) = p(σ(x)), for all x ϵ Q.    

 

Quantum Mechanics: Assume Q = Q(ℋ). Then there is a one-one correspondence between symmetries σ: Q(ℋ) ⟶ Q(ℋ) and unitary or anti-

unitary operators such that σ(x) = uxu-1, for all x ϵ Q(ℋ). 

If a state p corresponds to the density operator w, then                                           

   pσ(x) = p(σ(x)) = tr(wuxu-1) = tr(u-1wux),                              

so that the state pσ corresponds to the density operator u-1wu.   
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Dynamics. 

Now that we have shown that the symmetries of Q(ℋ) are  implemented by symmetries of ℋ, we may  time symmetry to introduce a 

dynamics for systems. 

To define dynamical evolution, we consider systems that are invariant under time translation. For such systems, there is no absolute time, only 

time differences. The difference from time 0 to time t is given by a symmetry σt: Q →Q, since the structure of the system of properties is 

indistinguishable at two values of time. 

The passage of time is given by a continuous representation of the additive group ℝ of real numbers into the group Aut(Q) of automorphisms 

of Q under composition: 

                                                 ℝ ⟶ Aut(Q), 

  i.e.   a map σ such that 

                             σt+t’ = σt o σt’                                                                                     and                       pσt(x) is a continuous function of t.                                     

Thus, it is a continuous one-parameter group, i.e. curve in Aut(Q).  

We have seen that an automorphism σ corresponds to a unitary or anti-unitary operator. Anti-unitary operators actually occur as symmetries, 

for instance in time reversal. However, for the above representation only unitary operators ut  corresponding to the symmetry σt can occur, 

since ut = ut/2
2. 
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 It follows that the evolving state pσt corresponds to the density operator wt = ut 
-1wut. 

By Stone’s Theorem, 

                                        ut =  e-i/ħHt                                                                      

so                                   wt = ei/ħHtw e-i/ħHt                                                                         

Differentiating, 

                                      ∂twt = -i/ħ [ H, wt ].                              

This is the Liouville-von Neumann Equation.  

Conversely, this equation yields a continuous representation of ℝ into Aut(Q( ℋ)).                                                                                                         

For w = Pψ, a pure state, this equation reduces to the customary Schrödinger Equation:  

                                         ∂tψ = -i/ħ Hψ.                                      
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Combined Systems. 

The direct sum B1⨁B2 of two σ-algebras (also called the free product or co-product) is well-known. (See S. Koppelberg, “ Handbook of 

Boolean Algebras”, vol.I, Chap. 4,Sect.11, Chap. 5, Sect.12). 

Classical Mechanics B(Ω):  B(Ω1) ⨁ B(Ω2) ≃ B(Ω1 x Ω2). 

 General Theory Q: The direct sum Q1⨁Q2 of two σ-complexes Q1 and Q2 is the σ-complex consisting of all the sub-σ-algebras of the direct 

sums B1⨁B2 of all the pairs σ-algebras B1 and B2 contained in Q1 and Q2 respectively. 

 If S1 and S2 are two systems with σ-complexes Q1 and Q2, then the system S1 + S2 has the σ-complex Q1⨁Q2. 

Quantum Mechanics:   Q(ℋ1) ⨁ Q(ℋ2) ≃ Q(ℋ1⨂ℋ2). 

  This construction of the direct sum generalizes in an obvious way from two to the direct sum of an arbitrary number of σ-complexes.  

 

 

 

 

  



 General Mech.      CM       QM 

Properties σ-complex 
Q = ∪B 

σ-algebra 
        B(Ω) 

σ-complex 
        Q(ℋ} 

States p:Q⟶[0,1] 
p∣B, probability measure 
 
 

p:B(Ω)⟶[0,1] 
prob. meas. 

A: ℋ⟶ℋ 
Density operator 
p(x)=tr(Ax) 
 

Pure States                   Extreme point   
of convex set                

p(s) =1   ωϵs 
       = 0  ω∉s   
i.e. ω ϵ Ω                    

Rank 1 operator 
i.e.unit  ϕϵℋ 
p(x)=<x,xϕ> 
 

Observables u:B(ℝ)⟶Q 
homomorphism 

f:Ω⟶ℝ Borel function 
 
 

A:ℋ⟶ℋ 
Hermitean operator 

Symmetries σ:Q⟶Q 
automorphism 

 h:Ω⟶Ω 
canonical 
transformation  

U: ℋ⟶ℋ unitary or  
anti-unitary operator 
σ(x)=UxU-1 

Dynamics σ:ℝ⟶Aut(Q) 
representation 

Liouville equation.  
∂tρ=-{H, ρ} 

Von Neumann-Liouville equ.                                             
∂twt=-i [ H, wt]                               

Conditioned 
States 
 

 p(x) ⟶ p(x|y) x,y ϵ B in Q                          
p(x|y)=p(x .y)/p(y)                       

p(x) ⟶ p(x|y) 
 =p(x .y)/p(y)            

 w ⟶ ywy / tr(wy)  
von Neumann 
-Lüder’s Rule                

Combined 
Systems 

Q1⨁Q2 
Direct sum 

Ω1 x Ω2 
Direct product 

ℋ1⨂ℋ2 
Tensor product 
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The Einstein-Podolsky-Rosen Experiment 

 By Born’s Rule, if Ω is an eigenstate of A, so that A Ω = λk Ω , say, then the observable A has probability 1 of giving the value λk  and being in the 

state Pk Ω  after the measurement of A. Thus, the observable A is certain to give the value λk if it is measured. Nothing is said about the value of 

A before the measurement, and in particular that A already has the value λk. If an eclipse is certain to happen tomorrow, we do not say that it 

has already happened. 

 

We will discuss the EPR experiment in the Bohm form of two spin ½ particles in the singlet state Γ of total spin 0. Suppose that in that state the 

two particles are separated and the spin component sz of particle 1 is measured in some direction z. That means that the observable 

sz⨂I of the combined system is being measured.  

Let Pz
±  = ½I ± sz . We have the spectral decomposition 

       sz⊗ I = (½)Pz
+⨂I + (-½)Pz

-⨂I                                                                                                                                                                                             

so the interaction algebra is B1 = { Pz
+⨂I, Pz

-⨂I ,1, 0}                                                                                                                                                                                                                                        

We may write the singlet state  

  Γ = √½(ψz
+  ⨂ψz

- - ψz
-⨂ψz

+) , where   Pz
±ψz

± = ψz
±.                                  Pz

+⨂I(Γ) = √½ (ψz
+⨂ψz

-)                                                                                                                                                                                                                                                                                                                        

Pz
-⨂I(Γ) = √½ (ψz

-⨂𝜓z
+). 

By Born’s Rule, 

a measurement of sz⊗ I,  will yield  
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 a value of ½ with probability ½ and a new state (ψz
+⨂ψz

-) and 

  a value of  -½ with probability ½  and new state  (ψz
-⨂𝜓z

+).                                                                                                                                                                                                   

 

Now,  (ψz
+⨂ψz

-) and  (ψz
-⨂𝜓z

+) are eigenstates of I⨂sz with respective eigenvalues -½ and ½. 

 By  Born’s Rule   

 the z-spin component of particle 2, if measured, is certain to have the opposite z-component of spin.                                                                                                                                                                                             

 I⨂sz  has the spectral decomposition , I⨂sz =  (½)I⨂ Pz
+ + (-½)I⨂Pz

-, so the interaction algebra of a measurement of particle 2 is the Boolean 

algebra B2 = { I⨂ Pz
+, I⨂Pz

-, 1, 0}.  

The interaction algebra B1 does not contain the properties  

I⨂Pz
+ or I⨂Pz

- .                                                                                       

So particle 2 has not acquired the opposite spin before it is measured, as a result of the measurement on particle 1.  

The relativistically invariant desciption of the EPR experiment is that if two experimenters A1 and A2 measure particles 1 and 2 in the 

same direction of spin, then an experimenter A3 in the common part of the future light cones of A1 and A2 will find that the spins are in 

opposite directions. 
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Now let us consider the correlations of spin components in the z and x directions in the EPR experiment. These can be written as  

sz⊗ I = ½ ↔ I⊗sz = -½         (i.e. Pz
+⊗ I ↔ I⊗ Pz

-)                          (1)                                                        

sx⊗ I = ½ ↔ I⊗sx =  -½        (i.e. Px
+⊗ I ↔ I⊗ Px

-)                          (2)                                                                                                  

Checking (1) by measuring sz⊗ I and I⊗sz and seeing that they have opposite spins,  precludes  measuring (2), since sz⊗ I and sx⊗ I do not 

commute. 

However, projection (1) commutes with projection (2), so we can simultaneously measure (1) and (2). 

In fact,    projection (1) = 1-Sz
2    (i.e. Sz = 0) 

                projection (2) = 1-Sx
2   (i.e. Sx = 0) 
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So, measuring Sz
2 and Sx

2 suffices to check (1) and (2). 

Furthermore, 

S = 0 is the same projection as the conjunction (Sz
 = 0).(Sx = 0), and hence is the same projection as  

( sz⊗ I = ½ ↔ I⊗sz = -½) . ( sx⊗ I = ½ ↔ I⊗sx =  -½)       

So, measuring S allows us to to check whether both correlations (1) and (2) are true. 

  



The Measurement Problem. 

 

We recall the standard description of an ideal measurement.  

A measurement of observable A of a system in an eigenstate ϕi  of A, with  

                ϕk ⊗ 𝜓0   ⟶  ϕk⊗ 𝜓k 

     By linearity,  if   ϕ = Σaiϕi                                                                             

                     ϕ ⊗ 𝜓0   ⟶    Σaiϕi⊗ 𝜓i                               

 

On the other hand, the completed measurement (or the prepared state), yields a  state ϕk as indicated by the apparatus state ψk, so that the 

state of the total system is ϕk⊗ 𝜓k, in contradiction to the evolved state Σ aiϕi ⊗ 𝜓i.   
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Kolmogorov, “ Foundations of the Theory of Probability”    1933 

Sample space of outcomes:        s1 , s2, s3 , …Boolean σ-algebra B of events  consists of the family of subsets of sample space with operations of 

complement and intersection  

  

Probability theory is based on a probability measure, i.e. a function                                                       

                                             p: B ⟶ [0,1] 

with domain B a σ-algebra, such that  

p(1) =1 

 p(Uai) = Σp(ai)   

for a1, a2,  … in B such that ai . aj =  0. i ≠ j 

 

The outcomes are in 1-1 correspondence with measured properties     P1 , P2 , P3 …  of the system, giving an isomorphism of the Boolean σ-

algebra they generate with the event algebra. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 Now, a calculation shows that (1) and (2) are projections which commute. One way to measure (1) is to measure sz⊗ I and I⊗sz and check that they have opposite spins. However, this 

precludes one checking (2) by measuring sx⊗ I and I⊗sx since sz⊗ I and sx⊗ I do not commute. However, a calculation shows that projection (1) is identical to the projection 1-Sz
2   

(i.e.the property Sz = 0)  and (2) is equally the projection 1- Sx
2 (i.e. Sx = 0).  Since Sz

2 and Sx
2 commute we can measure both and check whether (1) and (2) are simultaneously true. In 

fact, a calculation shows that the conjunction Sz = 0 . Sx = 0 is equal to the projection S = 0. So a measurement of S suffices to check whether (1) and (2) are simultaneously true. Of 

course, we would not determine the values of the spin components in either the z or x directions this way, but that is the whole point of this discussion: that a compound statement 

such as a correlation, can have a truth value without the component statements having a value. Just as a v b may be certain even though a and b are not, correlations (1) and (2) may 

be certain even when sz⊗ I and sx⊗ I are not. 

 

Claim this are reverting to the classical notion of intrinsic properties. The spin components are extrinsic properties of each particle, which do not have values 

until the appropriate interaction. We emphasize that this is not only a necessary consequence of our interpretation, but follows from a careful application of 

standard quantum mechanical principles, namely that a system in an eigenstate of an observable will yield the eigenvalue as the value of that observable only if 

and when that observable is measured.  

                                                                                                                         

We have not in this discussion mentioned a word about special relativity. Indeed the spin EPR phenomenon has nothing to do with position or motion and is 

independent of relativity.                                                                                   However, EPR with space-like separated particles has been used to put in question the 

full Lorentz invariance of of quantum mechanics. This is replaced by a weaker notion that EPR correlations cannot be used for faster than light signaling. We 



believe that Lorentz invariance is a fundamental symmetry principle which gives rise to fundamental observables, and is not simply an artifact of signaling 

messages between agents. As we just saw, the measurement of spin for one particle has absolutely no effect on the spin of the other.  The relativistically 

invariant description of the EPR experiment is that if experimenters A1 and A2 measure particles 1 and 2, and the directions of spin in which they are measured 

are the same, then an agent B in the common part of the future light cones of A1 and A2 will find that the spins are in opposite directions. 

 

                                                                                                                         15   

To be sure, the correlations of spin in EPR are quite different from classical correlations. The standard example of a pair of gloves, in which a knowledge that I 

have that the glove I have is left-handed tells me immediately that the glove I left in Australia is right-handed is certainly different from EPR pair. In the latter, we 

obtain correlations in arbitrary directions of spins that did not have values before they are measured. This is due to the difference between extrinsic and intrinsic 

properties. 

We analyze this in more detail. In our triple experiment on a spin 1 system, the total spin angular momentum S is conserved, with value √2. Hence, 

  S2 = Sx
2 + Sy

2 + Sz
2 = 2, for any ortho-frame (x,y,z). We may equivalent write this as                                                                                     

 Sz
2 = 0 if and only if Sx

2 = 1 and Sy
2 = 1, or equally                                                   Sz

2 = 1 if and only if Sx
2 = 0 or Sy

2 = 0                                       (*)                                                                    

This condition is true independently of whether Sx
2, Sy

2, and Sz
2 have values.  It is erroneous to think that extrinsic properties, or more generally observables, stop 

existing when they do not have values,(any more than an operator stops existing when the state is not an eigenstate of the operator). Indeed, the σ-complex Q 

is constructed out of properties, of which only a current interacting σ-algebra has values. 

                                                                                                                           The above condition subsists because of quantum laws about angular momentum which are 

independent of time or current interactions. This is a general phenomenon of σ-complexes of extrinsic properties. An element c in Q may lie in two σ-algebras B 

and B’, and thus be a union    

                                                                                                                            16     

c = a ν b in B and a union c = a’ ν b’, where a,b,a’,b’ are atoms in Q.  In the example above, we have (*), i.e. Sz
2 = 1-Sx

2 + 1-Sy
2, 

        or       Sz
2 = 1 if and only if Sx’

2
 = 0 or Sy’

2= 0 , 

          i.e.     Sz
2 = 1 –Sx’

2 + 1-Sy’
2                                                                   These relations exist in Q independently of whether B or B’ have truth values assigned. 



                                                                                                                                                                                                                                         In the EPR experiment, the 

total spin S of the two particles is conserved as they are separated, and so S = 0 remains true. Now the relation S = 0 implies that sz
1 = ½ if and only if sz

2 = -½ , for 

any direction z. 

  Again, this relation is a consequence of quantum laws about angular momentum, and is not dependent on any particular interaction. The measurement of sz
1, 

i.e. the observable sz
1⊗ I, yields the interaction algebra {0,1,sz

1=½,sz
1=-½}. As we have seen, the resulting state is an eigenstate of the observable I ⊗sz

2 , so that 

all we can say is that particle 2 has a spin value of ½ or -½ if measured, but not that it has a value as a result of the measurement of particle S1.                                                                                                                           

In summary, the extrinsic properties of a σ-complex may have relations subsisting among its elements because of general laws of physics, such as conservation 

laws, which are timeless and independent of particular interactions. (We shall discuss such laws in the section on Symmetries). This fact allows to interpret the 

EPR phenomenon in a fully relativistically invariant way. 

Now let us consider the correlations of spin components in the z and x directions in the EPR experiment. These can be written as  

sz⊗ I = ½ ↔ I⊗sz = -½         (i.e. Pz
+⊗ I ↔ I⊗ Pz

-)                                                             (1)                           

sx⊗ I = ½ ↔ I⊗sx =  -½        (i.e. Px
+⊗ I ↔ I⊗ Px

-)                                                             (2)                                                                    

 Now, a calculation shows that (1) and (2) are projections which commute. One way to measure (1) is to measure sz⊗ I and I⊗sz and check that they have opposite spins. However, this 

precludes one checking (2) by measuring sx⊗ I and I⊗sx since sz⊗ I and sx⊗ I do not commute. However, a calculation shows that projection (1) is identical to the projection 1-Sz
2   

(i.e.the property Sz = 0)  and (2) is equally the projection 1- Sx
2 (i.e. Sx = 0).  Since Sz

2 and Sx
2 commute we can measure both and check whether (1) and (2) are simultaneously true. In 

fact, a calculation shows that the conjunction Sz = 0 . Sx = 0 is equal to the projection S = 0. So a measurement of S suffices to check whether (1) and (2) are simultaneously true. Of 

course, we would not determine the values of the spin components in either the z or x directions this way, but that is the whole point of this discussion: that a compound statement 

such as a correlation, can have a truth value without the component statements having a value. Just as a v b may be certain even though a and b are not, correlations (1) and (2) may 
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We shall discuss the EPR phenomenon in the Bohm form of a system  S1+S2 of two spin ½ particles in the singlet state Γ of total spin 0. Suppose that in that state 

the two particles are separated and the spin component sz of particle S1 (i.e. the observable sz⨂I of the system                                                                                                                                                                                                                                          

S1+S2 is measured in some direction z. Let ϕz± be the eigenstates of S1 belonging to the eigenvalues ±½ of sz , and ψ± those of S2 . 
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 In our notation, if p(x) is the singlet state, then the new state is the conditional state  

p(x ∣ sz⨂I = ½ ).                                                                                                                                                                    

This state is an eigenstate of the observable I⨂sz belonging to the eigenvalue -½ , so that             

 p(I⨂sz= - ½∣ sz⨂I = ½ ) = 1.  

 This means that if the component of spin of particle S2  is measured, then it is certain to have the opposite spin to particleS1. It does not mean that particle S2 

has acquired the opposite spin before it is measured, as a result of the measurement on particle S1. Those who  
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 Our conclusion is that if particle 1 is measured and its spin is, say, ½ then if particle 2 is measured, it is certain to have the value ½. It does not mean that particle 2 has acquired the 

opposite spin before it is measured, as a result of the measurement on particle 1. Those who claim this are reverting to the classical notion of intrinsic properties. The interaction 
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