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. . . long may

Louis de Broglie

continue to inspire

those who suspect

that what is proved

by impossibility

proofs is lack of

imagination.a

a
J. Bell, “On the impossible pilot wave”,

Speakable and Unspeakable in Quan-

tum Mechanics, 2nd ed. pp. 159–168

(CUP, 2004)

http://learn-math.info
http://learn-math.info/historyDetail.htm?id=Bell_John
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Simon Kochen

Source: http://www.helixcenter.org

Ernst Specker

Source: https://en.wikipedia.org

http://www.helixcenter.org
http://www.helixcenter.org/participants/simon-kochen/
https://en.wikipedia.org
https://en.wikipedia.org/wiki/Ernst_Specker
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Bohr and Einstein: ψ-epistemicists
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Source: http://en.wikipedia.org/

There is no quantum world. There is only

an abstract quantum physical description. It is

wrong to think that the task of physics is to

find out how nature is. Physics concerns what

we can say about nature. — Niels Bohra

[t]he ψ-function is to be understood as

the description not of a single system but of

an ensemble of systems. — Albert Einsteinb

a
Quoted in A. Petersen, “The philosophy of Niels Bohr”, Bulletin of the

Atomic Scientists Vol. 19, No. 7 (1963)
b
P. A. Schilpp, ed., Albert Einstein: Philosopher Scientist (Open Court,

1949)



Penrose: ψ-ontologist
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It is often asserted that the state-vector is merely a convenient description

of ‘our knowledge’ concerning a physical system—or, perhaps, that the

state-vector does not really describe a single system but merely provides

probability information about an ‘ensemble’ of a large number of similarly

prepared systems. Such sentiments strike me as unreasonably timid

concerning what quantum mechanics has to tell us about the actuality of the

physical world. — Sir Roger Penrose1

Photo author: Festival della Scienza, License: Creative Commons generic 2.0 BY SA
1
R. Penrose, The Emperor’s New Mind pp. 268–269 (Oxford, 1989)
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ψ-epistemic ψ-ontic

Copenhagenish

Conventional

Copenhagen

Jeff Bub

Healy’s Quant. Pragmatism

Perspectival

QBism

Rovelli’s “Relational” QM

Perspectival Copenhagen

Realist

Ontic Model

Dirac-von Neumann

Bohmian mechanics

Spontaneous collapse

Modal interpretations

Exotic
Retrocausality Everett/Many worlds

Ironic many worlds
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(x, p)

f1 f2
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Lecture 1:

� Recap of Ontological Models

� The Pusey-Barrett-Rudolph Theorem

Lecture 2:

� Overlap Bounds

� Ontological Excess Baggage

� Relationships Between No-Go Theorems
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� Good references for most of the material in these lectures are:

� D. Jennings and ML, “No Return to Classical Reality”, Contemp.

Phys. 57:60–82, arXiv:1501.03202 (2016).

� ML, “Is the quantum state real? An extended review of ψ-ontology

theorems”, Quanta 3:67–155, arXiv:1409.1570 (2014).
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� Operational Theories:

x

t

a

b

c d
e

u
v

w
y

z

= variables we control

= variables we observe

Theory predicts Prob(a; b; c; d; ej )u; v; w; y; z

� Ontic States:

� In addition to the variables we

control and observe, there may

be additional physical

properties λ taking values in a

set Λ.

� λ is called an ontic state.

� Λ is the ontic state space.
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� (Single World) Realism: On each run of the experiment, the

operational variables and λ each take a definite value.

� Independence: Each run of the experiment is independent and

identically distributed.

⇔ ∃ a joint probability distribution

Pr(a, b, c, d, e, λ|u, v, w, y, z).

� Note: We use Prob for operational theory probabilities and Pr for

probabilities involving ontic states.

� The model reproduces the operational predictions if

Prob(a, b, c, d, e|u, v, w, x, y, z)

=

∫

Λ

Pr(a, b, c, d, e, λ|u, v, w, y, z)dλ.
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x

t

k

M

P

k

P M

� We focus on a simple kind of

experiment:

� P is a choice of

preparation.

� M is a choice of

measurement.

� k is the outcome of th

measurement.

� In a model that reproduces the operational predictions, we have

Prob(k|P,M) =

∫

Λ

Pr(k, λ|P,M)dλ.
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� In general. we can write

Prob(k|P,M) =

∫

Λ

Pr(k, λ|P,M)dλ

=

∫

Λ

Pr(k|λ, P,M)Pr(λ|P,M)dλ.

� To get an ontological model, we impose two more assumptions:

� Measurement independence: Pr(λ|P,M) = Pr(λ|P ).
� λ-mediation: Pr(k|λ, P,M) = Pr(k|λ,M).

� So, we have

Prob(k|P,M) =

∫

Λ

Pr(k|λ,M)Pr(λ|P )dλ.

� A model with ontic states satisfying (signle world) realism,

independence, measurement independence, and λ-mediation is

called an ontological model.
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� Alternatively, an ontological model has the following causal structure

k

M

P λ

Pr(λjP ) Pr(kjλ;M)

Pr(λ, k|P,M) = Pr(k|λ,M)Pr(λ|P )

� Pr(λ|P ) is called the epistemic state.

� Pr(k|λ,M) is called the response function of the measurement.

Pr(λjP )

λ λ

1 Pr(1jλ;M)Pr(0jλ;M)

R
Λ
Pr(λjP )dλ = 1

P
k Pr(kjλ;M) = 1
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� We are most interested in the case where the operational theory has a

model within quantum theory, in which case:

� Each preparation P is assigned a density operator ρP .

� Each measurement M is assigned a POVM {EM
k }, s.t.

∑

k

EM
k = I.

� The operational probabilities are given by

Prob(k|P,M) = Tr
(

EM
k ρP

)

.

� and so an ontological model must satisfy

Tr
(

EM
k ρP

)

=

∫

Λ

Pr(k|λ,M)Pr(λ|P )dλ.
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� The mappings P → ρP and (M,k) → EM
k need not be one-to-one.

� ρP1
= ρP2

does not imply Pr(λ|P1) = Pr(λ|P2).

� EM1

k1
= EM2

k2
does not imply Pr(k1|λ,M1) = Pr(k2|λ,M2).

� In fact, in general, they cannot be because of contextuality.

� It is very naughty to write:

� Pr(λ|ρ) instead of Pr(λ|P ),
� Pr(k|λ,E) instead of Pr(k|λ,M).

� However, we will often do so to avoid clutter.

� A statement involving Pr(λ|ρ) really means:

∀P s.t. ρP = ρ, the same statement for Pr(λ|P ).

� A statement involving Pr(k|λ,E) really means:

∀(M,k) s.t. EM
k = E, the same statement for Pr(k|λ,M).
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� We introduce a measure of epistemic overlap in an ontological model:

L(P1, P2) =

∫

Λ

min{Pr(λ|P1),Pr(λ|P2)}dλ

λ

Pr(λjP1) Pr(λjP2)

L(P1; P2)

� We will also use the n-way overlap:

L({Pj}nj=1) =

∫

Λ

min{Pr(λ|Pj)}nj=1dλ
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� P1 and P2 are ontologically distinct in an ontological model if

L(P1, P2) = 0.

Pr(λjP1) Pr(λjP2) Pr(λjP2)Pr(λjP1)

λ λOntologically distinct Ontologically indistinct

� An ontological model of quantum theoy is ψ-ontic if every pair of

preparations corresponding to distinct pure states is ontologically

distinct. Otherwise it is ψ-epistemic.

� Naughty notation: L(ψ1, ψ2) = 0 means:

∀ P1, P2 s.t. ρP1
= |ψ1〉〈ψ1| and ρP2

= |ψ2〉〈ψ2| , L(P1, P2) = 0.
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|z+〉

~λ

ϕ

ϑ

p(θ)

S. Kochen and E. Specker, J. Math. Mech., 17:59–87 (1967)

µz+(Ω) =

∫

Ω

p(ϑ) sinϑdϑdϕ

p(ϑ) =

{

1
π
cosϑ, 0 ≤ ϑ ≤ π

2

0, π
2
< ϑ ≤ π

|ψ〉
|φ〉
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� Lewis et. al. provided a ψ-epistemic model for all finite d.

� P. G. Lewis et. al., Phys. Rev. Lett. 109:150404 (2012)

arXiv:1201.6554

� Aaronson et. al. provided a similar model in which every pair of

nonorthogonal states is ontologically indistinct.

� S. Aaronson et. al., Phys. Rev. A 88:032111 (2013)

arXiv:1303.2834

� So we can either introduce new assumptions, or prove something

weaker than ψ-ontology.
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� The PBR Theorem2 shows that, under an additional assumption called

the Preparation Independence Postulate (PIP), ontological models of

quantum theory must be ψ-ontic.

� The PIP can be broken down into two assumptions:

� The Cartesian Product Assumption:

When two systems are prepared independently in a product state

|ψ〉A ⊗ |φ〉B , the joint ontic state space is ΛAB = ΛA × ΛB , i.e.

each system has its own ontic state λAB = (λA, λB).

� The No Correlation Assumption:

The epistemic state corresponding to |ψ〉A ⊗ |φ〉B is

Pr(λA, λB|ψA, φB) = Pr(λA|ψA)Pr(λB|φB).

2
Nature Physics 8:475–478 (2012).
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� In general, a joint system with two subsystems may have global ontic

properties that do not reduce to properties of the subsystems.

� In a ψ-ontic model, an entangled state would be an example of

such a property.

� So, in general we need ΛAB = ΛA × ΛB × Λglobal.

� All we require from the Cartesian Product Assumption is that

Λglobal plays no role in determining the measurement outcomes

when a product state is prepared, e.g. for product preparations

λglobal always takes the same value.

� Then, the No Correlation Assumption should be read as applying

to the marginal on ΛA × ΛB .
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� Theorem: An ontological model of quantum theory that satisfies the

PIP must be ψ-ontic.

� Proof strategy: We follow a proof by C. Moseley3.

1. Prove that |ψ1〉 and |ψ2〉 are ontologically distinct when

|〈ψ1|ψ2〉|2 = 1
2

using antidistinguishability.

2. Prove the case |〈ψ1|ψ2〉|2 < 1
2

by reduction to 1.

3. Prove the case 1
2
< |〈ψ1|ψ2〉|2 < 1 by reduction to 2.

3
arXiv:1401.0026
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� A set {ρj}nj=1 of n quantum states is antidistinguishable if there

exists an n-outcome POVM {Ej}nj=1 such that

∀j, Tr (Ejρj) = 0.

� Example:
ρ1

ρ2ρ3

E1

E2 E3
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� Lemma: If a set of states {ρj}nj=1 is antidistinguishable then, in any

ontological model that reproduces the quantum predictions

L({ρj}) = 0.

� Proof for finite Λ:

� L({ρj}nj=1) =
∑

λminnj=1{Pr(λ|ρj)} so it is > 0 iff there

exists a λ for which all Pr(λ|ρj) > 0.

� Suppose there exists such a λ. We require Pr(Ej |λ) = 0 for all j

to reproduce the quantum predictions.

� But
∑n

j=1 Pr(Ej |λ) = 1, so no such λ can exist.
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� By antidistinguishability,

0 =
n
∑

k=1

Tr (Ekρk)

=

∫

Λ

[

∑

k

Pr(Ek|λ)Pr(λ|ρk)
]

dλ

≥
∫

Λ

[

∑

k

Pr(Ek|λ)
n

min
j=1

{Pr(λ|ρj)}
]

dλ

=

∫

Λ

[

∑

k

Pr(Ek|λ)
]

n

min
j=1

{Pr(λ|ρj)}dλ.

� But
∑n

k=1 Pr(Ek|λ) = 1, so

0 =

∫

Λ

n

min
j=1

{Pr(λ|ρj)}dλ = L({ρj}nj=1).
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� W.l.o.g. we can choose a basis such that the two states are

|ψ1〉 = |0〉 , |ψ2〉 = |+〉 = 1√
2
(|0〉+ |1〉) .

� Now consider the four states

|Ψ1〉 = |0〉 ⊗ |0〉 |Ψ2〉 = |0〉 ⊗ |+〉
|Ψ3〉 = |+〉 ⊗ |0〉 |Ψ4〉 = |+〉 ⊗ |+〉

� and the orthonormal basis

|Φ1〉 =
1√
2
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)

|Φ2〉 =
1√
2
(|0〉 ⊗ |−〉+ |1〉 ⊗ |+〉)

|Φ3〉 =
1√
2
(|+〉 ⊗ |1〉+ |−〉 ⊗ |0〉)

|Φ4〉 =
1√
2
(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉)

� We have |〈Φj |Ψj〉|2 = 0, so {Ψj}4j=1
is antidistinguishable.
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� By the PIP: Pr(λA, λB |Ψ1) = Pr(λA|0)Pr(λB |0)
Pr(λA, λB |Ψ2) = Pr(λA|0)Pr(λB |+)

Pr(λA, λB |Ψ3) = Pr(λA|+)Pr(λB |0)
Pr(λA, λB |Ψ4) = Pr(λA|+)Pr(λB |+)

� Proof for finite Λ:

Pr(λAj0) > 0

Pr(λAj+) > 0

Pr(λBj+) > 0

Pr(λBj0) > 0

Pr(λA;λBjΨ1) > 0

Pr(λA;λBjΨ2) > 0

Pr(λA;λBjΨ3) > 0

Pr(λA;λBjΨ4) > 0

ruled out by
antidistinguishability

=

� In order to avoid having the purple ontic states, Pr(λ|0) and Pr(λ|+) must

have no overlap.
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� General proof:

0 = L({Ψj}4j=1) =

∫

ΛA

dλA

∫

ΛB

dλB

[

4

min
j=1

{Pr(λA, λB|Ψj)}
]

=

∫

ΛA

dλA

∫

ΛB

dλB min {Pr(λA|0)Pr(λB|0),Pr(λA|0)Pr(λB|+),

Pr(λA|+)Pr(λB|0),Pr(λA|+)Pr(λB|+)}

=

[
∫

ΛA

dλAmin {Pr(λA|0),Pr(λA|+)}
]

×
[
∫

ΛB

dλB min{Pr(λB|0),Pr(λB|+)}
]

= L(0,+)2.
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� Theorem: If |〈ψ1|ψ2〉|2 < |〈ψ3|ψ4〉|2 then there exists a CPT map E
s.t.

E(|ψ1〉〈ψ1|) = |ψ3〉〈ψ3| , E(|ψ2〉〈ψ2|) = |ψ4〉〈ψ4| .
� So, our measurement procedure consists of mapping |ψ1〉 to |0〉, |ψ2〉

to |+〉, and then applying the same argument as before.

� We can always choose a basis such that

|ψ1〉 = |0〉 , |ψ2〉 = sin θ |0〉+ cos θ |1〉 ,

with 0 ≤ θ < π
4

.

� Then, you can check that E(ρ) =M1ρM
†
1 +M2ρM

†
2 , with

M1 = |0〉〈0|+ tan θ |1〉 , M2 =

√

1− tan2 θ

2
(|0〉+ |1〉) 〈1| .

is CPT and does the job.
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� Let |Ψ1〉 = |ψ1〉⊗n
and |Ψ2〉 = |ψ2〉⊗n

.

� Since |〈Ψ1|Ψ2〉| = |〈ψ1|ψ2〉|n, there exists an n such that

|〈Ψ1|Ψ2〉|2 <
1

2
.

� Apply the previous argument |Ψ2〉.

|Ψ1〉 ⊗ |Ψ1〉 |Ψ1〉 ⊗ |Ψ2〉
|Ψ2〉 ⊗ |Ψ1〉 |Ψ2〉 ⊗ |Ψ2〉

� By the PIP,

Pr(λ1, λ2, · · · , λn|Ψ1) = Pr(λ1|ψ1)Pr(λ2|ψ1) · · ·Pr(λn|ψ1)

Pr(λ1, λ2, · · · , λn|Ψ2) = Pr(λ1|ψ2)Pr(λ2|ψ2) · · ·Pr(λn|ψ2)

and these have zero overlap iff Pr(λ|ψ1) and Pr(λ|ψ2) do.
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� The PBR theorem establishes the reality of the quantum state

provided you accept:

� The ontological models framework

� The PIP

� I think it is more likely that the ontological models framework is wrong

than the PIP.

� There are ψ-ontology theorems with different assumptions. I think

these are less plausible4.

� You can also prove slightly weaker results with a generalization of the

PIP5.

� Next time, we will look at what you can prove without the PIP and how

this is related to other no-go theorems.

4
ML, Quanta 3:67–155 (2014).

5
S. Mansfield, Phys. Rev. A., 94:042124 (2016).
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