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� By the Holevo bound, we can only reliably store 1 bit of classical information

in a qubit.

� There are an infinite number of pure quantum states, but there are an infinite

number of 1-bit classical probability distributions as well,

� so in a ψ-epistemic model this is not evidence that there is an infinite

amount of information in a qubit.

� Can we construct an ontological model for a qubit with only a finite number of

ontic states?

� For a ψ-ontic model, the answer is no, but proving this requires additional

assumptions.

� Lucien Hardy showed the answer is no in general.

� Since then, Montina has shown

� Λ must have the cardinality of the continuum.

� Even an approximate model must have |Λ| = O(ed), where d is Hilbert

space dimension.

See D. Jennings and ML, Contemp. Phys. 57:60–82 (2015) for references to original work.
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� Today, we will mainly consider preparations of pure states and measurements

in orthonormal bases.

� We use naughty notation for preparations Pr(λ|ψ), but not for

measurements.

� Lemma: Consider a preparation of |ψ〉 and let M be a measurement in an

orthonormal basis that includes |ψ〉. Let,

Λψ = {λ ∈ Λ|Pr(λ|ψ) > 0}, ΓMψ = {λ ∈ Λ|Pr(ψ|M,λ) = 1}.

Then Λψ ⊆ ΓMψ (up to measure-zero sets).

� Proof: 1 = |〈ψ|ψ〉|
2
=

∫

Λ

Pr(ψ|M,λ)Pr(λ|ψ)dλ

=

∫

Λψ

Pr(ψ|M,λ)Pr(λ|ψ)dλ.

However, since
∫

Λψ
Pr(λ|ψ)dλ = 1 and Pr(ψ|M,λ) ≤ 1, Pr(ψ|M,λ)

must equal 1 almost everywhere on Λψ .
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� Theorem: Any ontological model that can reproduce the predictions for

orthonormal basis measurements on pure states in any Hilbert space

dimension must have |Λ| = ∞.

� Proof:

� Assume that |Λ| = N for some finite N .

� Consider a 2-dimensional subspace spanned by |0〉 and |1〉 and the M
states

θ
θ

θ

θ

θ

θ
θ

j 0i
j 1i

j 2i

j 3i

j 4i

j 5i

j 6i

j 7i

|ψj〉 = cos

(

jπ

2M

)

|0〉+ sin

(

jπ

2M

)

,

j = 0, 1, . . . ,M − 1

|〈ψk|ψj〉|
2
< 1 for all j 6= k
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� Consider preparing the system in the state |ψj〉 and measuring it in a basis

that includes |ψk〉 for k 6= j.

� Then,
∑

λ∈Λ

Pr(ψk|λ)Pr(λ|ψj) < 1.

� Hence, there must exist a λ ∈ Λψj such that Pr(ψk|λ) < 1, otherwise the

sum would be 1.

� Since Pr(ψk|λ) = 1 everywhere on Λψk , Λψj and Λψk must be distinct

subsets of Λ.

� This applies to every pair, so there must be at least M distinct subsets of Λ.

� The number of distinct subsets of Λ is 2N , so

2N ≥M or N ≥ log2M.

� Since we can choose M as large as we like, N must be larger than any finite

integer. Hence, N = ∞.
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� In a ψ-epistemic model, the epistemic states corresponding to

nonorthogonal pure states can overlap, in which case they cannot be

distinguished with certainty because sometimes a λ in the overlap

region is prepared.

λ

Pr(λj 1) Pr(λj 2)

� In order for this to work as an explanation, the amount of overlap

needs to be comparable to the degree of indistinguishability.
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� Classical symmetric overlap:

Lc(ψ1, ψ2) =

∫

Λ

[min{Pr(λ|ψ1),Pr(λ|ψ2)}] dλ

λ

Pr(λj 1) Pr(λj 2)

Lc( 1;  2)

� Optimal success probability of distinguishing |ψ1〉 and |ψ2〉 if you

know λ:

pc(ψ1, ψ2) =
1

2
(2− Lc(ψ1, ψ2))



Quantum Symmetric Overlap

Introduction

Ontological Excess

Baggage

Maximallyψ-epistemic

models

Indistinguishability

Classical Symmetric

Overlap

Quantum Symmetric

Overlap

Classical Ayymmetric

Overlap

Quantum Asymmetric

Overlap

Relations

KS Noncontextuality

Connection to

Noncontextuality

Overlap Bounds

Previous results

Overlap deficit

Experiment

Preparation

Contextuality

Conclusions
No Go Theorems 2 21/06/2017 – 12 / 31

� Classical symmetric overlap:

Lc(ψ1, ψ2) =

∫

Λ

[min{Pr(λ|ψ1),Pr(λ|ψ2)}] dλ

� Quantum symmetric overlap:

Lq(ψ1, ψ2) = inf
0≤E≤I

[〈ψ1|E |ψ1〉+ 〈ψ2| (I − E) |ψ2〉]

= 1−

√

1− |〈ψ1|ψ2〉|
2

� Optimal success probability of distinguishing |ψ1〉 and |ψ2〉 based on

a quantum measurement:

pq(ψ1, ψ2) =
1

2
(2− Lq(ψ1, ψ2))

� A model is maximally ψ-epistemic (1) if Lc(ψ1, ψ2) = Lq(ψ1, ψ2) for

all |ψ1〉, |ψ2〉.
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� Classical asymmetric overlap:

Ac(ψ1, ψ2) =

∫

Λψ2

Pr(λ|ψ1)dλ

Pr(λj 2)Pr(λj 1)

λAc( 1;  2)

� Ac(ψ1, ψ2) is the amount of the quantum probability of obtaining

outcome |ψ2〉 when measuring a system prepared in state |ψ1〉 that is

accounted for by the region of overlap between Pr(λ|ψ1) and

Pr(λ|ψ2).
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� Classical asymmetric overlap:

Ac(ψ1, ψ2) =

∫

Λψ1

Pr(λ|ψ2)dλ

� Quantum asymmetric overlap:

Aq(ψ1, ψ2) = |〈ψ1|ψ2〉|
2

� A model is maximally ψ-epistemic (2) if Ac(ψ1, ψ2) = Aq(ψ1, ψ2)
for all |ψ1〉, |ψ2〉.
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� Lc(ψ1, ψ2) ≤ Ac(ψ1, ψ2)

� Proof:

Lc(ψ1, ψ2) =

∫

Λ

[min{Pr(λ|ψ1),Pr(λ|ψ2)}] dλ

=

∫

Λψ2

[min{Pr(λ|ψ1),Pr(λ|ψ2)}] dλ

≤

∫

Λψ2

Pr(λ|ψ1)dλ

= Ac(ψ1, ψ2)
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� For the remainder of this section, consider an ontological model for

measurements in a finite set M of orthonormal bases.

� We previously defined the set:

ΓMψ = {λ|Pr(ψ|λ,M) = 1}.

� This is the set of ontic states that always return the outcome |ψ〉 when

measurement M is made.

� But |ψ〉 may appear in more than one orthonormal basis, so we can define:

Γψ = ∩{M∈M||ψ〉∈M}Γ
M
ψ .

� This is the set of states that always returns the outcome |ψ〉 regardless of

which basis that contains it is measured, i.e. the noncontextual set for |ψ〉.
� Clearly, in a Kochen-Specker noncontextual model,

|〈ψ2|ψ1〉|
2
=

∫

Γψ2

Pr(λ|ψ1)dλ.

� The converse is also true (up to the removal of measure-zero sets of

contextual ontic states).
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� We proved previously that Λψ ⊆ ΓMψ (up to sets of measure zero).

� In fact, the stronger result Λψ ⊆ Γψ also holds.

Λ 
Γ
M1

 Γ
M2

 

Γ
M3

 

� Technically, ΓMψ is a measure-one set according to Pr(λ|ψ) and the

intersection of a finite number of measure-one sets is also measure one.

� Now, in general, we must have

Ac(ψ1, ψ2) =

∫

Λψ2

Pr(λ|ψ1)dλ ≤

∫

Γψ2

Pr(λ|ψ1)dλ

≤

∫

Λ

Pr(ψ2|λ,M)Pr(λ|ψ1)dλ = |〈ψ2|ψ1〉|
2
.

� So, if the model is maximally ψ-epistemic (2) then it is also Kochen-Specker

noncontextual (up to measure zero sets).
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� Can we quantify the degree to which a model fails to be maximally

ψ-epistemic?

� We will do this with symmetric overlaps ((1) definition) because they are

experimentally robust.

� Take a finite set M of orthonormal bases and consider a subset V of the

states that occur in M.

� Choose another state |ψ〉 to compare them with.

� We can compute

L̄q(ψ) =
1

|V |

∑

|φ〉∈V

Lq(ψ, φ) =
1

|V |

∑

|φ〉∈V

(

1−

√

1− |〈φ|ψ〉|
2

)

.

� We want to upper bound L̄c =
1

|V |

∑

|φ〉∈V Lc(ψ, φ).

� This will give us a lower bound on the average overlap deficit

∆L̄(ψ) = L̄q(ψ)− L̄c(ψ)

.
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� If ∆L̄(ψ) is close to 1 then almost all of the states |φ〉 ∈ V are close

to being ontologically distinct from |ψ〉 — strong evidence against the

ψ-epistemic explanation of indistinguishability.

� How do we bound L̄c(ψ)?

� Using Kochen-Specker noncontextuality inequalities.

� We can use

Lc(ψ, φ) ≤ Ac(ψ, φ) ≤

∫

Γφ

Pr(λ|ψ)dλ

� to obtain

L̄c(ψ) ≤
1

|V |

∑

|φ〉∈V

∫

Γφ

Pr(λ|ψ)dλ.

� The RHS is bounded by the maximum probability that can be assigned

to the |φ〉’s in a KS noncontextual model, i.e. a noncontextuality

inequality.
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Dimension |V | L̄c(ψ) L̄q(ψ)

Prime power

Barrett et. al.1 d ≥ 4 d2 1/d2 1−
√

1− 1/d

Leifer2 d ≥ 3 2d−1 1/2d−1 1−
√

1− 1/d

Branciard3 d ≥ 4 n ≥ 2 1/n 1−
√

1− 1
4n

−1/(d−2)

Amaral et. al.4 d ≥ nj nj ≥? nδ−1
j 1−

√

1
2 + ǫ

1
J. Barrrett et. al., Phys. Rev. Lett. 112, 250403 (2014)

2
ML, Phys. Rev. Lett. 112, 160404 (2014)

3
C. Branciard, Phys. Rev. Lett. 113, 020409 (2014)

4
B. Amaral et. al., Phys. Rev. A 92, 062125 (2015)
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Optimal dimension Optimal |V | ∆L̄

Barrett et. al. 4 16 0.0715

Leifer 7 64 0.0586

Branciard 4 n→ ∞ 0.134

Amaral et. al. d→ ∞ nj → ∞ 0.293
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� Ringbauer et. al.5 experiment (based on Branciard’s construction) obtained:

∆L̄ ≥ 0.047± 0.010

� What should we think about such small numbers?

� In any ontological model there are two mechanisms for explaining the

indistinguishability of quantum states:

� The ψ-epistemic explanation: Pr(λ|ψ1) and Pr(λ|ψ2) overlap.

� The response functions Pr(ψ|λ,M) do not reveal full information about

λ.

� Although we expect overlap to play an important role in ψ-epistemic model,

there is no good reason why the second explanation should not play a role

too.

� Therefore, ∆L̄ needs to be close to 1 in order to have strong evidence

against ψ-epistemic models.

5
M. Ringbauer et. al. Nature Physics 11, 249–254 (2015).
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� We will show that non-maximally ψ-epistemic (2) models must be

preparation contextual (and hence Kochen-Specker contextuality

implies preparation contextuality).

� Reminder: Two preparations, P1 and P2 are operationally equivalent

if, for all (M,k),

Prob(k|P1,M) = Prob(k|P2,M).

� In quantum theory, preparations that are represented by the same

density operator are operationally equivalent.

� An ontological model is preparation noncontextual if, whenever P1 and

P2 are operationally equivalent, then

Pr(λ|P1) = Pr(λ|P2).
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� Theorem: ψ-ontic models are preparation contextual.

� Proof: Consider the four states: |0〉, |1〉, |±〉 = 1√
2
(|0〉+ |1〉).

j0i

j�i

j1i

j+i

I

2

� Since Lc(ψ1, ψ2) = 0 for every pair of states, Λ0, Λ1, Λ+ and Λ−
are disjoint (up to measure-zero sets).
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� Because the maximally mixed state is a 50/50 mixture of |0〉 and |1〉,
and also a 50/50 mixture of |+〉 and |−〉, a preparation contextual

model must have

1

2
Pr(λ|0) +

1

2
Pr(λ|1) =

1

2
Pr(λ|+) +

1

2
Pr(λ|−).

� But for (almost) all λ ∈ Λ0 ∪ Λ1 ∪ Λ+ ∪ Λ−, only one of the terms is

nonzero.
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� Theorem: Non-maximally ψ-epistemic (2) models are preparation contextual.

� Proof: If a model is non-maximally ψ-epistemic (2) then there exists a pair of

states, |ψ1〉 and |ψ2〉, such that
∫

Λψ2

Pr(λ|ψ1)dλ < |〈ψ2|ψ1〉|
2
.

� Consider the two-dimensional subspace spanned by |ψ1〉 and |ψ2〉. Let

|ψ⊥
1 〉 and |ψ⊥

2 〉 be states in this subspace such that
∣

∣

〈

ψ⊥
1

∣

∣ψ1

〉∣

∣

2
= 0 and

∣

∣

〈

ψ⊥
2

∣

∣ψ2

〉
∣

∣

2
= 0. j 1i

j 2i

j ?
1
i

j ?
2
i

I
2
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� In order to reproduce the quantum predictions, there must be a set

Ω ⊆ Λ\Λψ2
such that Pr(ψ2|λ) > 0 everywhere in Ω and

∫

Ω
Pr(λ|ψ1)dλ > 0.

� It is also the case that
∫

Ω
Pr(λ|ψ2)dλ = 0 because Ω is disjoint from Λψ2

.

� Now, we must also have
∫

Ω

Pr(ψ2|λ)Pr(λ|ψ⊥
2 )dλ ≤ |〈ψ2|ψ1〉|

2
= 0,

so
∫

Ω
Pr(λ|ψ⊥

2 )dλ = 0 because Pr(ψ2|λ) > 0 everywhere in Ω.

� The maximally mixed state can be prepared as a 50/50 mixture of |ψ1〉 and
∣

∣ψ⊥
1

〉

, or as a 50/50 mixture of |ψ2〉 and
∣

∣ψ⊥
2

〉

.

� So, in a preparation noncontextual model, we must have:

1

2
Pr(λ|ψ1) +

1

2
Pr(λ|ψ⊥

1 ) =
1

2
Pr(λ|ψ2) +

1

2
Pr(λ|ψ⊥

2 ).

� Integrate both sides over Ω. The LHS is > 0 but the RHS = 0. Hence, we

cannot have a preparation noncontextual model.
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� Proving that models of quantum theory must be ψ-ontic would imply

many existing no-go theorems, but we cannot do so without the PIP.

� Kochen-Specker contextuality has most of the same implications, but it

does not imply excess baggage.

� It is still possible that models of infinite dimensional Hilbert spaces, or

finite dimensional Hilbert spaces with POVMs must be ψ-ontic.

� Existing overlap bounds are fairly weak. It is possible that other

contextuality inequalities and/or methods not based on contextuality

could give better bounds.

� What next for ψ-epistemicists?

� Adopt a Copenhagenish interpretation.

� Adopt a more exotic ontology: e.g. retrocausality, ironic

many-worlds, ?
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