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Despite the success of quantum theory, there is still no consensus on what is this
theory telling us about reality. One of the problems is that the standard postulates,
in terms of Hilbert spaces and operators acting on them, do not have a clear
operational or physical meaning. To overcome this situation, there has recently
been an important effort to construct alternative formulations of quantum theory
in terms of postulates which have a clear and direct operational meaning. These
lecture notes include an exposition of some of these reformulations of quantum
mechanics, and provide a review of the tools and concepts that are often used
in this field. An effort has been make to lighten the mathematical content as
much as possible. It is important to mention that, unfortunately, this is a partial
presentation of the subject with very important omissions.
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1 Post-classical probability theory

In classical probability theory, no matter how complex a system is, there is always a joint
probability distribution which simultaneously describes the statistics of all the measurements
that can be performed on a system. In other words, there exists a maximally informative
measurement, of which all other measurements are functions. This fact no longer holds in
quantum theory (QT) due to the existence of incompatible measurements. Motivated by
this, Birkhoff and von Neumann generalized the formalism of classical probability theory to
include incompatible measurements. This is nowadays called general probabilistic theories
(GPTs), the convex operational framework, or Post-classical probability theory.

Recently, a lot of interest has been directed to the study of GPTs, with the double aim
of reconstructing QT and exploring what lies beyond. This, in particular, led to the dis-
covery that many features originally thought as specific to QT (such as for instance: Bell-
inequality violation, no-cloning, monogamy of correlations, Heisenberg-type uncertainty rela-
tions, measurement-disturbance tradeoffs, and the possibility of secret key distribution), are
common to most GPTs. In this light, the standard question “why does nature seem to be
quantum instead of classical?” sounds less appropriate than asking “why QT instead of any
other GPT”. A possible answer to this question is that any GPT different from QT violates
at least one of the physically meaningful postulates that are introduced below.

1.1 Fundamental assumption

The formalism of GPTs can be derived or axiomatized in many different ways. In this notes we
derive this formalism from the following fundamental informal assumption: Experimentalists
enjoy a classical reality where they can prepare experimental setups, perform mixtures of
operations and measurements that produce a single outcome.
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Most GPTs will not be able to predict this classical reality, and hence, cannot be taken as
universally valid. But this is not necessarily a problem.

1.2 States

In QT states (equivalence classes of preparations) are represented by density matrices. But,
how can we represent states in theories that we do not yet know? The state of a system is
represented by the probabilities of some reference measurement outcomes x1, . . . , xk which
are called fiducial :

ωΩ =


p(x1|Ω)
p(x2|Ω)

...
p(xk|Ω)

 ∈ S ⊂ Rk , (1)

where Ω denotes a preparation. This list of probabilities has to be minimal but contain
sufficient information to predict the probability distribution of all measurements that can be
in principle performed on the system. That is, for any outcome x̃, its probability p(x̃|Ω) is
determined by the numbers p(x1|Ω), p(x2|Ω), . . . , p(xk|Ω). (Note that this is always possible
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since the list could contain the probabilities of all outcomes x̃; in particular, the list can be
infinite k = ∞.) The number of fiducial outcomes k is equal to the dimension of the vector
space spanned by the set of all mixed states S, as otherwise one fiducial probability would
be functionally related to the others, and the list not minimal. PICTURE.

It is convenient to include the possibility that the system is present with certain probability
U(ω) ∈ [0, 1], which by consistency, is equal to the sum of probabilities for all the outcomes of
any measurement: U(ω) =

∑
i p(x

(i)|ω). When the system is absent (U(ω) = 0) the fiducial
outcomes have zero probability, hence the corresponding state (1) is the null vector 0 ∈ S.
The subset of normalized states N = {ω ∈ S : U(ω) = 1} has dimension k − 1, and satisfies
S = conv(N ∪ {0}). PICTURE. By the rules of probability, the set of all the allowed states
S is convex. Indeed, by preparing the state ω1 with probability q and ω2 with probability
1 − q, we effectively prepare the mixed state qω1 + (1 − q)ω2. The pure states of S are the
extreme points of N (recall that 0 is also an extreme point, but it does not belong to N ).
The other elements of N are called mixed states.

Note that, in QT, S is the set of density matrices, not the Hilbert space. As an instance,
the fiducial outcomes for a qubit can be chosen to be

ω =


p(σx = 1)
p(σy = 1)
p(σz = 1)
p(σz = −1)

 , U(ω) =


0
0
1
1

 · ω . (2)

Note that the set of fiducial outcomes need not be unique, nor simultaneously measurable.
Actually, only classical probability theory has all fiducial outcomes belonging to the same
measurement:

ω =


q1

q2
...
qk

 , U(ω) =


1
1
...
1

 · ω , (3)

where qk ≥ 0 and
∑

i qi = 1. In the formalism of GPTs every convex set can be seen as the
state space S of an imaginary type of system, which in turn, allows for constructing multipar-
tite states spaces which violate Bell inequalities more (or less) than QT. This illustrates the
degree to which this formalism generalizes classical probability theory and QT, and allows
us to catch a glimpse on the multitude of alternative theories that we are considering here.

1.3 Measurements

Let us denote the probability of obtaining any given outcome x when the system is in the state
ω by Ex(ω) = p(x|ω). (From now on, we identify preparations and states ω ≡ Ω.) Clearly,
this function must satisfy Ex(ω) ⊆ [0, 1] for all ω ∈ S. Now, let us prove that Ex : Rk → R is
linear. Suppose the system is prepared in state ω1 with probability q and ω2 with probability
(1−q). Then the relative frequency of any given outcome x should not depend on whether the
actual preparation, ω1 or ω2, is forgotten before or after the measurement. This translates to

Ex

(
qω1 + (1− q)ω2

)
= qEx(ω1) + (1− q)Ex(ω2) ,
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which together with Ex(0) = 0 implies the linearity of Ex. Linear functions E : Rk → R
satisfying Ex(S) ⊆ [0, 1] are called effects. Sometimes it is convenient to use the scalar
product notation E · ω = E(ω).

An r-outcome measurement is characterized by r effects E1, . . . , Er satisfying the normal-
ization condition E1(ω) + · · ·+Er(ω) = 1 for all ω ∈ S. This can also be written in terms of
the unit effect U as a vector equality E1 + · · ·+ Er = U .

It is often understood that in classical probability theory and QT, all effects E are in
principle measurable. However, this need not be the case in other GPTs, but it is sometimes
taken as a postulate, and it can be seen as some kind of idealization.

Postulate (No restriction). In any system, all its effects are in principle measurable.

1.4 Transformations

Transformations are implemented by controlling the dynamics of a system (for example,
adjusting some external fields). A transformation can be represented by a map T : S → S
which, for the same reason as outcome probabilities E, has to be linear (i.e. a matrix).
Sometimes there are pairs of (physical) transformations T, T ′ whose composition leaves the
system unaffected, independently of its initial state TT ′ = 1. In this case we say that
these transformations are reversible T ′ = T−1. (We stress that here we refer to physical
transformations. If T has a mathematical inverse which is not a physical transformation,
then T is not reversible.) The set of reversible transformations forms a (compact) group of
real matrices G. A widely-used postulate, sometimes called “reversibility”, is the following.

Postulate (Transitivity). For every pair of pure states ω1, ω2 ∈ S there is a reversible
transformation T ∈ G taking one state onto the other ω2 = Tω1.

The set of transformations generated by continuous-time dynamics form a connected Lie
group; and the elements of the corresponding Lie algebra are the possible “Hamiltonians” of
the system. (Note that, in general, these Hamiltonians will have have nothing to do with
Hermitian matrices).

1.5 Multi-partite systems

Two systems A and B constitute a composite system AB if a measurement for A together with
a measurement for B uniquely specify a measurement for AB, independently of the temporal
ordering. The fact that subsystems are systems themselves implies that each global state ωAB

has well-defined reduced states ωA and ωB which do not depend on which transformations and
measurements are performed on the other subsystem. This is often referred to as no-signaling,
but here we take it as part of the definition of bipartite system. The next proposition establish
a relationship between the local and the global fiducial outcomes.

Proposition 1. If x1, . . . , xkA and y1, . . . , ykB are fiducial outcomes of A and B, then the
joint AB state can be written as

ωAB =

[
λAB

ηAB

]
∈ RkAB , (4)

with the locally-tomographic part is

λAB =


p(x1, y1)
p(x1, y2)

...
p(xkA , ykB )

 ∈ RkA ⊗ RkB , (5)
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and the holistic part

ηAB =

 p(z1)
...

p(zhAB
)

 ∈ RhAB . (6)

Holistic effects can only be measured when the two subsystems are jointly addressed. If Ex and
Ey are effects of A and B, then their joint probability is given by the standard tensor-product
rule

p(x, y) = (Ex ⊗ Ey) · λAB . (7)

If UA and UB are the unit effects of A and B, then the reduced states are

ωA = (1A ⊗ UB) · λAB , (8)

ωB = (UA ⊗ 1B) · λAB . (9)

The global dimension is given by kAB = kAkB + hAB.

Proof. We start by proving that the kAkB joint fiducial probabilities p(xi, yj) determine any
other joint probability p(x, y). If the system B is measured first, giving outcome yj , then the
system A is in the state determined by the fiducial probabilities p(xi|yj) = p(xi, yj)/p(yj),
and the single-system probability rule can be applied p(x|yj) =

∑
iE

i
x p(xi|yj). Multiplying

by p(yj)/p(x) and using Bayes’ rule gives

p(yj |x) =
∑
i

Ei
x p(xi, yj)/p(x) . (10)

By using the freedom in the ordering of measurements, we can interpret p(yj |x) as the state of
the system B once the system A has been measured giving outcome x, and the single-system
probability rule can be applied again: p(yj |x) =

∑
j E

j
y p(yj |x) =

∑
i,j E

i
xE

j
y p(xi, yj)/p(x).

Multiplying both sides of this equality by p(x) gives (7).
Next we show that the set of vectors λAB span the full locally-tomographic subspace

RkA ⊗ RkB . This implies that the degrees of freedom in λAB are not redundant. In QT,
the only vectors ηAB which have pure states as marginals ωA ∈ SA, ωB ∈ SB, are product
ηAB = ωA ⊗ ωB. The same proof technique applies in this more general formalism. This
implies that the set of all vectors ηAB must contain all product states, otherwise there would
be a state in SA or SB which is not the marginal of any state in SAB. Next, note that by
minimality, SA contains kA linearly independent vectors, and analogously for SB. The tensor
products of all these vectors forms a set of kAkB linearly independent vectors in RkAkB as
claimed.

The above can be extended to multi-partite systems by systematically performing bi-
partitions. The following postulate is often assumed, and it restores the familiar tensor-
product structure of multi-partite state spaces.

Postulate (Tomographic locality). The state of a composite system is completely char-
acterized by the correlations of measurements on the individual components. (Equivalently:
kAB = kAkB.)

QT satisfies tomographic locality. For example, any 2-qubit state is characterized by the
joint probabilities

ωAB =


p(U,U) p(U, σx = 1) p(U, σy = 1) p(U, σz = 1)

p(σx = 1, U) p(σx = 1, σx = 1) p(σx = 1, σy = 1) p(σx = 1, σz = 1)
p(σx = 1, U) p(σx = 1, σx = 1) p(σx = 1, σy = 1) p(σx = 1, σz = 1)
p(σy = 1, U) p(σy = 1, σx = 1) p(σy = 1, σy = 1) p(σy = 1, σz = 1)
p(σz = 1, U) p(σz = 1, σx = 1) p(σz = 1, σy = 1) p(σz = 1, σz = 1)

 . (11)

5



However, in QT restricted to the real numbers we have

ωAB =


p(U,U) p(U, σx = 1) p(U, σz = 1)

p(σx = 1, U) p(σx = 1, σx = 1) p(σx = 1, σz = 1)
p(σx = 1, U) p(σx = 1, σx = 1) p(σx = 1, σz = 1)
p(σz = 1, U) p(σz = 1, σx = 1) p(σz = 1, σz = 1)

p(σy = 1, σy = 1)

 . (12)

Hence, tomographic locality does not hold. Also, note that since p(σy = 1, U) nor p(U, σy = 1)
are not well-defined, the outcome p(σy = 1, σy = 1) cannot be understood as the correlation
between local outcomes.

2 Information-processing properties

Does information play a significant role in the foundations of physics? Information is the
abstraction that allows us to refer to the states of systems when we choose to ignore the
systems themselves. This is only possible in very particular frameworks, like in classical
probability theory or QT, or more generally, whenever there exists an information unit such
that the state of any system can be reversibly encoded in a sufficient number of such units.
How can we interpret that the state spaces of a 1/2-spin particle and a photon are identical?

2.1 Number of perfectly distinguishable states

We say that the states ω1, . . . , ωC ∈ S are perfectly distinguishable if there exists a C-outcome
measurement E1, . . . , EC such that

Ei · ωj = δij , (13)

where δij is a Kronecker delta. Note that perfectly distinguishable states ωj must be normal-
ized. We say that a state space S has capacity C if the largest set of perfectly distinguishable
states has size C. We say that E1, . . . , EC is a complete measurement if it perfectly distin-
guishes C states in S and C is the capacity of S. In QT the capacity is equal to the dimension
of the associated Hilbert space, and the perfectly-distinguishable states are associated to an
orthogonal basis.

Postulate (Multiplicativity of capacity). In any bipartite system CAB = CACB.

Loosely speaking, the following postulate states that what characterizes a type of system
is its capacity for carrying information, and nothing else. This requirement provides a lot of
structure to the theory, since it imposes that SC is contained in SC+1, and so on, providing a
sort of onion-like structure. In order to articulate the following postulate, we need to express
it in terms of the subsets of normalized states NC ⊂ SC .

Postulate (Subspaces). Let NC be a state space with capacity C and E1, . . . , EC a complete
measurement. Any state space NC−1 with capacity C − 1 is equivalent to

NC−1 ≡ {ω ∈ NC : E1(ω) + · · ·+ EC−1(ω) = 1} . (14)

Without the following postulate it would be impossible to estimate a state without making
additional assumptions (e.g. bounds on the energy).

Postulate (Finite dimensionality). The number of parameters k that characterize the
state of a system with finite C is finite (k ≤ ∞).
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Figure 1: No Simultaneous Encoding. This figure shows that there cannot be mixed states
in the boundary of NC=2. If there is one, say ωmix, then this boundary contains
a non-trivial face (left figure). Since all effects are observable, we can decode a
with the effect E, which gives probability one for all states inside that facet, and
probability zero for some other state(s). By encoding (a, a′) = (0, 0), (0, 1) in two
different states inside that face we can perfectly retrieve a through E, while still
getting some partial information about a′ with another effect E′ (right figure).

2.2 Information with exclusive access

The capacity C of a system quantifies the amount of information that can be retrieved from
a system, but not the one that can be encoded. Let us consider the situation where Alice
simultaneously encodes two variables a and a′ in a given system, and sends it to Bob, who will
only retrieve one of the two. But which one Bob decodes is unknown to Alice. Depending on
its interest, a or a′, Bob is allowed to make a different measurement on the system that Alice
has sent him, obtaining his bests guesses b, b′ for a, a′ respectively. The following postulate
is for single systems what Information Causality is for bipartite correlations.

Postulate (No Simultaneous Encoding). If a system with capacity C is used to per-
fectly encode a C-valued classical variable, then it cannot simultaneously encode any further
information:

P (b|a, a′) = δba ⇒ P (b′|a, a′ = 0) = P (b′|a, a′ = 1) . (15)

This postulate is satisfied by classical probability theory and QT. It implies that any state
space with C = 2 has no boundary states which are not extremal (See proof in Figure 1).

3 Reconstructions of quantum theory

Here we go.

3.1 Quantum theory from 5 reasonable axioms

The following was obtained by Lucien Hardy, and has become a very influential contribution.

Postulate (Tomographic locality). kAB = kAkB.

Postulate (Multiplicativity of capacity). CAB = CACB.

Postulate (Continuous Transitivity). For every pair of pure states ω1, ω2 ∈ S there is a
reversible transformation T ∈ Gconnected taking one state onto the other ω2 = Tω1.
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Postulate (Subspaces). Let NC be a state space with capacity C and E1, . . . , EC a complete
measurement. Any state space NC−1 with capacity C − 1 is equivalent to

NC−1 ≡ {ω ∈ NC : E1(ω) + · · ·+ EC−1(ω) = 1} . (16)

The above postulates imply that kC , the dimension of SC , is of the form

kC = Cr , (17)

for some positive integer r, which depends on the theory. In classical probability theory r = 1
and in QT we have r = 2.

Postulate (Simplicity). The dimension of SC is the minimal one compatible with the other
axioms (minimal r).

Hardy proves that the only theory satisfying all these postulates is QT. Hence, any other
probabilistic theory must violate at least one of these postulates. An interesting research di-
rection consists of relaxing some of these postulates (e.g. Simplicity) and obtain modifications
of quantum theory, against which quantum theory could be experimentally contrasted. It is
interesting to mention that, if instead of Continuous Transitivity we consider just Transitivity,
then the only theory satisfying the above postulates is classical probability theory.

3.2 A derivation of QT from physical requirements

Several authors, including Hardy himself, have expressed a dislike for Simplicity. The fol-
lowing reconstruction avoids this postulate. This derivation of QT was obtained by Markus
Müller and the myself, and it was very influenced by previous work from Borivoje Dakic and
Caslav Brukner.

Postulate (Finite dimensionality). k2 is finite.

Postulate (Tomographic locality). kAB = kAkB.

Postulate (Continuous Transitivity). For every pair of pure states ω1, ω2 ∈ S there is a
reversible transformation T ∈ Gconnected taking one state onto the other ω2 = Tω1.

Postulate (Subspaces). Let NC be a state space with capacity C and E1, . . . , EC a complete
measurement. Any state space NC−1 with capacity C − 1 is equivalent to

NC−1 ≡ {ω ∈ NC : E1(ω) + · · ·+ EC−1(ω) = 1} . (18)

Postulate (No restriction). All effects in S2 are in principle measurable.

Here we have again that, if instead of Continuous Transitivity we consider Transitivity, then
classical probability theory also satisfies the postulates. Some of the above postulates (e.g.
No restriction) can be relaxed and the expense of making its statement a bit more involved.

4 Final remarks

One can be concerned with the logical minimality of the postulates and the possibility of hid-
den redundancies. For example, the Subspaces postulate seems like a really strong statement.
One way to avoid unnecessarily strong postulates is to follow a classificational approach, where
one systematically classifies all GPTs compatible with a small set of postulates. Once this
is done, this classification will reveal which postulates can be additionally imposted in order
to single out QT or whatever is the goal. This approach has been taken in, for instance,
arXiv:1610.04859 and arXiv:1208.0493.
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