Network-Locality

Marc-Olivier Renou In collaboration with: Armin Tavakoli, Denis Rosset, Yuyi Wang, Nicolas Gisin, Nicolas Brunner

FACULTÉ DES SCIENCES

See also research at Perimeter (Waterloo), ICFO (Barcelona), UFRN (Natal), Neel (Grenoble) ...

r outputs $a, b, c \in \{1, \dots, r\}$

Behavior $\vec{P} = \{p(abc|xyz)\}$

1 common source: Classical/Quantum/Other

For a local hidden variable: Characterize $\mathcal{L} = {\vec{P}} \subset \mathbb{R}^{q^p r^q}$?

- *L* is a polytope
- Vertices of \mathcal{L} are deterministic distributions
- 2 characterization of the polytope L:
 O Enumerate all deterministic distributions
 - Enumerate all facets

 L is characterized by Bell inequalities, which are « easily » enumerable.

• Starting point to find quantum violations

A quantum Non-Local experiment $\vec{P} \notin \mathcal{L}, \vec{P} \in \mathcal{Q}$:

The CHSH experiment

Generalisation to Network-Locality

Independent sources \rightarrow non convex problem

Network-Locality

Some violations from Bell Nonlocality:

Not genuine Network-Locality violation!

Network-Locality

Some violations from Bell Nonlocality:

Not genuine Network-Locality violation!

Bell-Nonlocality VS Network-Locality

Bilocality & Extensions

Triangle scenario

Bell-Nonlocality VS Network-Locality

Bilocality & Extensions

Triangle scenario

1st bilocality inequality

Correlators: $\langle A_x B_y C_z \rangle$

Mean value of abc for input xyz

$$I_{1} = \frac{1}{4} \langle (A_{1} + A_{2})B_{1}(C_{1} + C_{2}) \rangle_{\lambda,\mu} \qquad \sqrt{|I_{1}|} + \sqrt{|I_{2}|} \leq \mathbf{1}$$

$$I_{2} = \frac{1}{4} \langle (A_{1} - A_{2})B_{2}(C_{1} - C_{2}) \rangle_{\lambda,\mu}$$

C.Branciard, N.Gisin, and S.Pironio,

14

Characterizing the Nonlocal Correlations Created via Entanglement Swapping, Phys. Rev. Lett. 104, 170401 (2010)

CHSH

$$S = |\langle A_1 B_1 \rangle + \langle A_2 B_1 \rangle + \langle A_1 B_2 \rangle - \langle A_2 B_2 \rangle|$$

Let:

$$\hat{A}_1 = A_1 + A_2 \\ \hat{A}_2 = A_1 - A_2$$

$$\left| \hat{A}_1 \right| + \left| \hat{A}_2 \right| \le 2$$

Then:

$$\begin{split} S &= \left| \left\langle \hat{A}_1 B_1 + \hat{A}_2 B_2 \right\rangle \right| \\ &\leq \int \left| \hat{A}_1 B_1 \right| + \left| \hat{A}_2 B_2 \right\rangle \right| \qquad \text{(Triang. Ineq.)} \\ &\leq \left\langle \left| \hat{A}_1 \right| + \left| \hat{A}_2 \right| \right\rangle \quad \leq \quad 2 \end{split}$$

1st bilocality inequality

• Let
$$I_i = \frac{1}{4} \langle \hat{A}_i B_i \ \hat{C}_i \rangle$$
:
 $|I_i| \le \frac{1}{4} \langle |\hat{A}_i| |\hat{C}_i| \rangle = \frac{1}{4} \langle |\hat{A}_i| \rangle \langle |\hat{C}_i| \rangle$ (Triang. Ineq.)

$$\begin{split} S &= \sqrt{|I_1|} + \sqrt{|I_2|} \leq \frac{1}{4} \left(\sqrt{\langle |\hat{A}_1| \rangle} \sqrt{\langle |\hat{C}_1| \rangle} + \sqrt{\langle |\hat{A}_2| \rangle} \sqrt{\langle |\hat{C}_2| \rangle} \right) \\ &\leq \frac{1}{2} \sqrt{\langle |\hat{A}_1| + |\hat{A}_2| \rangle} \sqrt{\langle |\hat{C}_1| + |\hat{C}_2| \rangle} \quad \text{(C.S. Ineq.)} \\ &\leq 1 \quad 16 \end{split}$$

1st bilocality inequalities

 $\sqrt{|I_1|} + \sqrt{|I_2|} \le 1$

C.Branciard, D.Rosset, N.Gisin, S.Pironio (2012), 17 Bilocal versus non-bilocal correlations in entanglement swapping experiments, Phys. Rev. A 85, 032119

1st bilocality inequalities

 $\sqrt{|I_1|} + \sqrt{|I_2|} \le 1$

- Partial characterization of \mathcal{NL}
- Tight
- Quantum violations
- Bilocal set: nonconvex

C.Branciard, D.Rosset, N.Gisin, S.Pironio (2012), 18 Bilocal versus non-bilocal correlations in entanglement swapping experiments, Phys. Rev. A 85, 032119

1st bilocality inequality

A.Tavakoli, MO.Renou, N.Gisin, N.Brunner (2017) 1 Correlations in star networks: from Bell inequalities to network inequalities arXiv:1702.0386

2nd bilocality inequality

Correlators:

$$\langle A_x B_y C_z \rangle$$

Mean value of $ab_y c$ for input xz

$$I_{1} = \frac{1}{4} \langle (A_{1} + A_{2})B_{1}(C_{1} + C_{2}) \rangle_{\lambda,\mu} \qquad \sqrt{|I_{1}|} + \sqrt{|I_{2}|} \leq \mathbf{1}$$

$$I_{2} = \frac{1}{4} \langle (A_{1} - A_{2})B_{2}(C_{1} - C_{2}) \rangle_{\lambda,\mu}$$

C.Branciard, N.Gisin, and S.Pironio, (2010) 20 Characterizing the Nonlocal Correlations Created via Entanglement Swapping, Phys. Rev. Lett.104,170401

2nd bilocality inequality

•
$$\rho_V = V |\psi^-\rangle \langle \psi^-| + (1-V) \frac{Id}{4}$$

- ρ_V violates CHSH iff $V > \frac{1}{\sqrt{2}}$
- If B does a Bell State Measurement : AC share ρ_{V^2}
- Bilocality inequality is violated iff $V^2 > \frac{1}{2}$

2nd bilocality inequality

Strong connections with CHSH violation:

- Violated by all pairs of pure entangled states
- With a BSM for Bob:

 ρ violates CHSH $\leftrightarrow \rho \otimes \rho$ violates biloc. ineq.

F.Andreoli, G.Carvacho, L.Santodonato, R.Chaves, F.Sciarrino Maximal violation of n-locality inequalities in a star-shaped quantum network, arXiv:1702.08316 N.Gisin, Q.Mei, A.Tavakoli, MO.Renou, N.Brunner (2017) All entangled pure quantum states violate the bilocality inequality arXiv:1702.00333

Extension: Star Network

Generalizable to any star network with binary output:

- With $A_1, A_2, \dots \to \hat{A}_1, \hat{A}_2, \dots ; B_1, B_2, \dots \to \hat{B}_1, \hat{B}_2, \dots ; \dots$
- And $I_i = \langle \hat{A}_i \hat{B}_i \hat{C}_i \dots M_i \rangle$

$$\sum_i |I_i|^{1/N} \leq C$$

A.Tavakoli, MO.Renou, N.Gisin, N.Brunner (2017)

Correlations in star networks: from Bell inequalities to network inequalities arXiv:1702.0386

- For any correlator Bell inequality about network \mathcal{N} in terms of the $\langle A_{x_1}^1 \dots A_{x_M}^M \rangle$
- Using the transformation $A_1^{M+1} \rightarrow \hat{A}_2^{M+1} = A_1^{M+1} + A_1^{M+1}$ $\hat{A}_2^{M+1} = A_1^{M+1} - A_1^{M+1}$
- Construct a new Bell inequality with terms $\langle A_{x_1}^1 \dots A_{x_M}^M \hat{A}_i^{M+1} \rangle$
- Proof of CHSH, go from CHSH to Bilocality Inequality, ...

D.Rosset, C.Branciard, T.Barnea, G.Pütz, N.Brunner, N.Gisin 24 Nonlinear Bell Inequalities Tailored for Quantum Networks Phys. Rev. Lett. 116, 010403 (2016)

Bell-Nonlocality VS Network-Locality

Bilocality & Extensions

Triangle scenario

Triangle scenario

• Triangle network

No input

Triangle scenario, \mathcal{NQ}

Can it be in \mathcal{NL} ?

T.Fritz, (2012) Beyond Bell's Theorem: Correlation Scenarios, New J. Phys. 14 103001

Triangle scenario, \mathcal{NL}

If
$$\vec{P} \in \mathcal{NL}$$
:

- $\forall \operatorname{run}, x = x' \colon x = x' = f(X) \equiv \tilde{X}$
- $\forall \operatorname{run}, y = y' \colon y = y' = g(Y) \equiv \widetilde{Y}$
- p(abxy) violates CHSH

Cannot be explained classically!

T.Fritz, (2012) Beyond Bell's Theorem: Correlation Scenarios, New J. Phys. 14 103001

Triangle scenario, \mathcal{NQ}

- Need 4 outputs (to check that nobody lies about his input)
- Not genuine example of Network-Locality violation, uses Bell Nonlocality

T.Fritz, (2012) Beyond Bell's Theorem: Correlation Scenarios, New J. Phys. 14 103001

2 output triangle scenario

2 questions:

Characterization of \mathcal{NL} ?

 $\mathcal{NL} \neq \mathcal{NQ}$?

Strategies S

$$p(\tilde{a}\tilde{b}\tilde{c}) = \int d\alpha \, d\beta \, d\gamma \, \delta^{\tilde{a}}_{a(\beta,\gamma)} \delta^{\tilde{b}}_{b(\gamma,\alpha)} \delta^{\tilde{c}}_{c(\alpha,\beta)}$$

Strategies S

Any S: Given by a cube with a 0 or a 1 for each point of 3 faces

No dimensional advantage in Quantum theory

- $\mathcal{NL} \subset \mathcal{NQ} \subset \mathbb{R}^8$
- $P_0: \left\{ p(abc) = \frac{1}{8} \right\}$ is "central"
- Is there some direction $P_0 + \delta P \in \mathcal{NQ}, \notin \mathcal{NL}$?
- Not possible in standard Bell Nonlocality
 Not obvious in Network-Locality

No dimensional advantage in Quantum theory

- Take S_0 strategy for P_0
- Vary it: obtain $P_0 + \delta P$
- Show that any $P_0 + \delta P$ can be obtained

This can be generalized to any network

- Consider $S \rightarrow \vec{P}$
- Fix source $\alpha = \alpha_0$: We obtain a new strategy $S_{\alpha_0} \rightarrow \vec{P}_{\alpha_0}$

•
$$\vec{P} = \int d\alpha_0 \vec{P}_{\alpha_0}$$

$$\vec{P} = \int d\alpha_0 \vec{P}_{\alpha_0}$$

Carathéodory theorem:

If $\vec{P} \in \mathbb{R}^d$ in convex hull of A, A convex, then \vec{P} is the convex combination of d points of A

$$\vec{P} = \sum_{i=1}^{8} u_i \vec{P}_i,$$

 \vec{P}_i has a strategy independent from α

D. Rosset, N. Gisin, and E. Wolfe, All n-local set are semialgebraic, in preparation

$$\vec{P} = \sum_{i,j,k=1}^{8} u_i v_j w_k \vec{P}_{i,j,k}, \vec{P}_{i,j,k}$$
 deterministic

• GHZ distribution $[p_{000} = p_{111} = \frac{1}{2}]$ $\notin \mathcal{NL}$

ω distribution $[p_{001} = p_{010} = p_{100} = \frac{1}{3}]$ ∉ *NL*

Characterization of \mathcal{NL} :

Given \vec{P} , answer to " $\vec{P} \in \mathcal{NL}$ "?

Enumerate all 0/1 repartition, find a u_i, v_j, w_k distributions: too hard!

- Restricted problems:
 - Given p_{000} , Max (p_{111}) ?
 - Given p_{001} , p_{010} , Max (p_{100}) ?

 $\begin{array}{l} \underline{\text{Carathéodory theorem}}\\ \Phi(\vec{P}) = \{p_{000}, p_{111}\} \text{ has a rank 2 strategy.}\\ \Psi(\vec{P}) = \{p_{001}, p_{010}, p_{100}\} \text{ has a rank 3 strategy.} \end{array}$

- LoomisWhitney inequality: $p_{000}^2 \le p_0^A p_0^B p_0^C$
- Could not find violation (with maximally entangled qubit)

• Only one joint probability

Link to computer science

Finner inequalities:

$$p_{00...0} \leq \prod_{i} (p_0^{A_i})^{\nu_i}$$
,

The v_i depends on the network structure

Link to computer science

MO.Renou et al., in preparation

Acknowledgments

Armin Tavakoli GAP-Geneva

Nicolas Brunner GAP-Geneva

Nicolas Gisin GAP-Geneva

Yuyi Wang Distributed Computing Group-ETH

Denis Rosset National Cheng Kung University, Tainan, Taiwan

To conclude

 Bell Nonlocality / Network-Locality

1.0 0.5 0.0 -0.5 -1.0 -1.0 -0.5-0.5

- Find \mathcal{NL} : hard non-convex problem.
- Some *Q* violation for no-loop network

 Partial characterization of *NL*. Other technics (Inflation). No "genuine" example of violation for the triangle.

