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Causality
(classical version)



  

On what grounds can one say that A causes B? 

Some more specific questions:

Are the answers different talking about events or variables? 

Can we always identify causes, and are they unique? 

Under which circumstances can A not causally influence B? 

Meta-question: What does this definition of causality accomplish? 

(philosophical insights, operational predictions...)



  

Some possible answers

Aristotle's four causes: 
(1) material cause: constituent matter, (2) formal cause: shape, arrangement,
(3) efficient or moving cause: agents (4) final cause: purpose. [Falcon]

„We may define a cause to be an object, followed by another, and
where all the objects similar to the first are followed by objects
similar to the second.“ [Hume]

In quantum field theory, „for our theory to be causal, we must
require that all spacelike separated operators commute“. [Tong]

[jlorenz1]

„If an improbable coincidence has occurred, there
must exist a common cause.“ [Reichenbach]

An event A is statistically independent of its non-descendants given its causal parents.
[Pearl]

Hans Reichenbach



  

Causal Models: conceptual and mathematical framework

Origin: statistics – sociology, epidemiology, econometrics...

System modelled: relations among a set of coarse-grained random variables

Parameters

description of influences

Structure

pattern of influences

directed acyclic graph conditional probabilities

+ P (B∣AG)
P (A∣G)
P (G)

G

A

B



  

Causal Models: conceptual and mathematical framework

Origin: statistics – sociology, epidemiology, econometrics...

System modelled: relations among a set of coarse-grained random variables

Parameters

description of influences

Structure

pattern of influences

directed acyclic graph conditional probabilities

+ P (B∣AG)
P (A∣G)
P (G)

G

A

B

P (Y∣X )≥0 Σ
y
P (Y∣X )=1∀ x

Mathematical toolbox:

● conditional probabilities:

● belief propagation: P (Y )=Σx P (Y∣X=x)P (X=x)



  

Causal Models: features and phenomena

experimenter chooses
a value for A

all other influences
remain fixed

variable B
changes in
response

Causation defined in terms of interventions
A has a causal effect on B if we can change the value of B by manipulating A
(while leaving all else unchanged).
● practical significance: control
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Causation defined in terms of interventions
A has a causal effect on B if we can change the value of B by manipulating A
(while leaving all else unchanged).
● practical significance: control
● assumption of free will (or at least sufficiently strong randomness)

G

A

B

I

structural effect:
surgery on DAG

P (B∣AG)
P (A∣G )
P (G )

Local intervention leaves all other
causal mechanisms unaffected: 
autonomy of causal mechanisms

effect on conditionals: intervention
overrides incoming causal influences



  

Causal Models: features and phenomena
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Causal Models: features and phenomena

G

A1

B

A2

I

P (B ∣A2G)
P (A2∣A1, I )
P (A1∣G)
P (G )

G

A

B

I

P (B∣AG)
P (A∣G )
P (G )

simple picture of interventions:
incoming causal influences
are eliminated

more informative perspective:
splitting of variables

assigned treatment

intent to treat

randomization

recovery

unobserved
common cause



  

Causal Models: features and phenomena

Interventions can be problematic.

Randomized trial on the health effects of smoking

Experimental astronomy

Solution: causal inference



  

Jan   Mar     May      Jul Sep   Nov

ice cream consumption
drowning incidents

Causal Models: features and phenomena

Causal inference: discovering causal relations without interventions



  

ice cream
consumption

drowning
incidents

temperature
Jan   Mar     May      Jul Sep   Nov

ice cream consumption
drowning incidents

Causal Models: features and phenomena

Causal inference: discovering causal relations without interventions



  

Jun Jul Aug Sep

warm months

ice cream
consumption

drowning
incidents

temperature

Nov Dec Jan Feb

cold months

Conditional independence: 
two variables become statistically
independent when one conditions
on a third

Jan   Mar     May      Jul Sep   Nov

ice cream consumption
drowning incidents

Causal Models: features and phenomena

Causal inference: discovering causal relations without interventions

„If an improbable coincidence has occurred, there must exist a common cause.“ [Reichenbach]

I ⊥D∣T



  

Causal Models: features and phenomena

Conditional independences can arise from various causal structures. 

W

X Y

Z
academic job

research teaching

sock
colour

preference

X ⊥Y ∣Z

(a) chain    (b) fork      (c) collider

Z

X Y

left sock right sock

choice
this

morning

ZX

Ynot a good day

experiment
stops working

faulty
aircon

Structures that lead to  :
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Conditional independences can arise from various causal structures. 

W

X Y

Z
academic job

research teaching

sock
colour

preference

faithfulness/stability [Def 2.4.1]:
a model generates a stable
distribution if the set of
conditional independences
remains unchanged under
changes of parametrization
(conditionals)
Example of unstable conditional
independences: two
equiprobably coins and C=A+B
(mod2)

d-separation
(property of causal structure)

conditional independence
(property of probability distribution)

?

Conditional independences reveal features of
causal structure if we exclude fine-tuning.

X ⊥Y ∣Z

(a) chain    (b) fork      (c) collider

x=α z+ux

y=β z+γ x+uy

Z

X

Y

Z

X Y

left sock right sock

choice
this

morning

ZX

Ynot a good day

experiment
stops working

faulty
aircon

Structures that lead to  :

γ=0⇒Y ⊥ X ∣Z
γ=−β/α⇒Y ⊥(X , Z )



  

Causal Models: features and phenomena

uG

G

A

B

uA

uB

P (B∣AG)
P (A∣G)
P (G)

B= f B(A ,G ,uB)
A= f A(G ,uA)
G= f G(uG)

Functional causal models: 

alternative description with deterministic relations

coarse-graining

fine-graining

autonomy ↔ independence of noise sources



  

Causal Models: features and phenomena

Data: joint probability distribution
over two variables, x={-1,+1} and y

[Example and figure from Janzing and Schölkopf, arXiv:0804.3678]

Example: using the independence of mechanisms for causal inference



  

Causal Models: features and phenomena

Data: joint probability distribution
over two variables, x={-1,+1} and y

[Example and figure from Janzing and Schölkopf, arXiv:0804.3678]

Explanation 1: x → y

P ( x)=1
2
∀ x

P ( y∣x )=α exp(−( y−x)2
μ )

Explanation 2: y → x

P ( y ) P (x∣y )

Example: using the independence of mechanisms for causal inference



  

Causal Models: features and phenomena

Time in causal models

„We may define a cause to be an object, followed by
another, and where all the objects similar to the first
are followed by objects similar to the second.“ [Hume]
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The class of continuous timelike curves determines the topology of spacetime.
[Malament, also Hawking et al]



  

Causal Models: features and phenomena

Time in causal models

„We may define a cause to be an object, followed by
another, and where all the objects similar to the first
are followed by objects similar to the second.“ [Hume]

X

Y

X

Y
vs

The class of continuous timelike curves determines the topology of spacetime.
[Malament, also Hawking et al]

Causal structure is acyclic.

W

X Y

Z



  

Causal Models: features and phenomena

Using causal information: inference

Example 1: Given a causal model, derive joint and marginal probability distributions.

T

I D

ice cream   drowning

temperature

P (T )={.6 ,.4 }
I=0 I=1

T=0 .7 .3

T=1 .1 .9

P(I|T) D=0 D=1

T=0 .9 .1

T=1 .4 .6

P(D|T)

P (X∣Y )≥0 Σ
x
P (X∣Y )=1∀ yConditional probabilities:
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Using causal information: inference

Example 1: Given a causal model, derive joint and marginal probability distributions.

T

I D

ice cream   drowning

temperature

P (T )={.6 ,.4 }
I=0 I=1

T=0 .7 .3

T=1 .1 .9

P(I|T) D=0 D=1

T=0 .9 .1

T=1 .4 .6

P(D|T)

I=0
D=0

I=0
D=1

I=1
D=0

I=1
D=1

T=0 .378 .042 .162 .018

T=1 .016 .024 .144 .216

I=0
D=0

I=0
D=1

I=1
D=0

I=1
D=1

.394 .066 .306 .234

marginal prob. distrib. P(ID)
joint prob. distrib. P(IDT)

P (X∣Y )≥0 Σ
x
P (X∣Y )=1∀ yConditional probabilities:



  

Causal Models: features and phenomena

Using causal information: inference

Example 2: Quantum foundations in Zurich

P (Z=1∣Q)={10−4 (Q=0)
10−1 (Q=1)

P (Q∣Z=1)=?
Q

Z
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Using causal information: inference

Example 2: Quantum foundations in Zurich

P (Q=1)=10−7

P (Z=1∣Q)={10−4 (Q=0)
10−1 (Q=1)

P (Z ,Q)=P (Z∣Q)P (Q)

P (Q∣Z=1)=?

retrodiction: inference about the causal past

causal vs inferential conditionals
● same mathematical form
● different epistemological significance

→ P (Q∣Z )=P (Z ,Q)
P (Z )

Bayesian inversion:
Q=0 Q=1

Z=0 1-10-7 10-7

Z=1 1-10-4 10-4

P(Q|Z)

Q

Z

Q

Z C
P (C=1∣Q)={.5 (Q=0)

.8 (Q=1)

Example 3: Correlation with coffee

P (C∣Z=1)=?

P (C∣Z )=Σ
q
P (C∣Q=q)P (Q=q∣Z )

=Σ
q
P (C ,Q=q∣Z )

inference via a common cause

Note
● two-step process: 

joint P(CQ|Z), then marginalize
● same mathematical form as before



  

Highlights: classical causal models

● definition of causation based on interventions

● formal consequence: splitting of variables

● causation vs inference: mathematically similar but conceptually distinct

Some essential features:

● autonomy of causal mechanisms

 → no fine-tuning: conditional independences reflect features of causal structure

● admit an account in terms of underlying deterministic mechanisms

● causal order: acyclic, aligned with temporal order



  

Quantum Indeterminism



  



  
Bohmian trajectories in
a double-slit experiment



  
Bohmian trajectories in
a double-slit experiment

● open question

● hidden variable models are possible
– if one gives up other assumptions

● exploiting quantum indeterminism:



  

Retrocausality
and Causal Loops



  

The delayed-choice quantum eraser

BS1(A)

BS1(B)

BS2

D(A)

D(+)

D(-)

D(B)

lens

[Kim et al, PRL 84, 1 (2000)]

emitter
screen

photon 1: quick detectionphoton 2: delayed
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The delayed-choice quantum eraser

BS1(A)

BS1(B)

BS2

D(A)

D(+)

D(-)

D(B)

lens

[Kim et al, PRL 84, 1 (2000)]1

√ 2
[∣A 〉+ei ϕ∣B 〉 ] →BS1 1

2 [ (∣A 〉+∣A' 〉 )+ei ϕ (∣B 〉+∣B' 〉 ) ]
→
BS2 1

2 [∣A 〉+ei ϕ∣B 〉+ 1

√ 2
(1+eiϕ)∣+ 〉+ 1

√ 2
(1−ei ϕ)∣− 〉 ]

emitter
screen

photon 1: quick detectionphoton 2: delayed

One cannot control which information one acquires, only post-select.

probability of learning (i) path:    ; (ii) phase: P(A)+P (B)=1
2 P(+ )+P (−)=1

2



  

The two-state vector formalism

ψ

ϕ

M̂=Σ
m
m Π̂m

preparation

post-selection

∣ψ 〉

〈ϕ∣

conventional quantum mechanics:

P (m∣ψ)=∣Π̂m∣ψ 〉∣2 , P (ϕ , m∣ψ)=∣〈ϕ∣Π̂m∣ψ 〉∣2

⇒ P (m∣ψ ,ϕ)=
∣〈ϕ∣Π̂m∣ψ 〉∣2

Σm∣〈ϕ∣Π̂m∣ψ 〉∣2

forward in timebackward in timeTSVF:

[Vaidman, arXiv:0706.1347]



  

The two-state vector formalism

ψ

ϕ

M̂=Σ
m
m Π̂m

preparation

post-selection

∣ψ 〉

〈ϕ∣

conventional quantum mechanics:

P (m∣ψ)=∣Π̂m∣ψ 〉∣2 , P (ϕ , m∣ψ)=∣〈ϕ∣Π̂m∣ψ 〉∣2

⇒ P (m∣ψ ,ϕ)=
∣〈ϕ∣Π̂m∣ψ 〉∣2

Σm∣〈ϕ∣Π̂m∣ψ 〉∣2

forward in timebackward in timeTSVF:

„We cannot, however, create with certainty a particular backward evolving
quantum state, (…) The difference follows from the time asymmetry of the
memory arrow of time.“

[Vaidman, arXiv:0706.1347]



  

Closed timelike curves

y⊕x

yx

y



  

Closed timelike curves

y⊕x=y ⇒ x=0

consistency condition:y⊕x

yx

y



  

Closed timelike curves

Consistency conditions:

ρ=Tr2 [U (ρi⊗ρ)U
† ]

ρo=Tr1 [U (ρi⊗ρ)U
† ]

ρo

ρi

Quantum mechanics avoids „'paradoxical' constraints on the past“.

[Ralph&Myers]
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Closed timelike curves

Consistency conditions:

ρ=Tr2 [U (ρi⊗ρ)U
† ]

ρo=Tr1 [U (ρi⊗ρ)U
† ]

ρo

ρi

[Ralph&Myers]
Every      admits a solution. [Deutsch]ρi

Quantum mechanics avoids „'paradoxical' constraints on the past“.

ρi„Qubit's view“ assumes infinitely many copies of   , leading to

● non-linear transformations

● perfect state discrimination and cloning

● inequivalence of probabilistic mixtures, breaking entanglement

● instant computation: Pspace [Aaronson&Watrous]

● ...

problems solved and
persisting:
- grandfather paradox: solved
by demanding consistency
- retrocausal constraints on
past: solved by showing that
all inputs admit consistent
solutions
- violations of quantum
principles: persist – maybe
less severe because they're
'just' quantum principles
- instant computation: pretty
bad.



  

Nonlocality



  

Quantum Field Theory

Consider a classical, free, real scalar field            .

non-relativistic case: Schrödinger field

 

i
∂
∂ t
ϕ=−∇

2

2m
ϕ ⇒ ϕ( x⃗ , t)=∫ d 3 k

(2π)3
a( k⃗ )ei k⃗⋅⃗x e−i k0 t , k 0=

∣⃗k∣2

2m

ϕ( x⃗ , t )



  

Quantum Field Theory

Consider a classical, free, real scalar field            .

non-relativistic case: Schrödinger field

    indexes independent modes (harmonic oscillators):

i
∂
∂ t
ϕ=−∇

2

2m
ϕ ⇒ ϕ( x⃗ , t)=∫ d 3 k

(2π)3
a( k⃗ )ei k⃗⋅⃗x e−i k0 t , k 0=

∣⃗k∣2

2m

ϕ( x⃗ , t )

H = 1
2m∫ d3 x ∇⃗ ϕ∗⋅∇⃗ ϕ=∫ d3 k

(2π)3
a∗ (k⃗ )a( k⃗ )

k⃗



  

Quantum Field Theory

Consider a classical, free, real scalar field            .

non-relativistic case: Schrödinger field

    indexes independent modes (harmonic oscillators):

promote   to annihilation operators,             to field (annihilation) operator: 

Note:  is an observable.

i
∂
∂ t
ϕ=−∇

2

2m
ϕ ⇒ ϕ( x⃗ , t)=∫ d 3 k

(2π)3
a( k⃗ )ei k⃗⋅⃗x e−i k0 t , k 0=

∣⃗k∣2

2m

ϕ( x⃗ , t )

ϕ̂† ( x⃗ , t )∣0 〉=∫ d 3 k

(2π)3
e i k⃗⋅⃗x e−i k 0 t â†( k⃗ )∣0 〉 single localized excitation

k⃗

a( k⃗ ) ϕ( x⃗ , t )

ϕ̂( x⃗ , t )

H = 1
2m∫ d3 x ∇⃗ ϕ∗⋅∇⃗ ϕ=∫ d3 k

(2π)3
a∗ (k⃗ )a( k⃗ )



  

Quantum Field Theory

Consider a classical, free, real scalar field            .

relativistic case: Klein-Gordon field

promote   to annihilation operators,             to field (annihilation) operator: 

∂2

∂2 t
ϕ=(∇2−m2)ϕ ⇒ k 0

2=∣⃗k∣2+m2

ϕ( x⃗ , t )=∫ d 3 k

2k0(2π)
3 [a ( k⃗ )ei k⃗⋅⃗xe−i∣k0∣t+a∗ ( k⃗ )e−i k⃗⋅⃗xe+i∣k 0∣t ]

ϕ( x⃗ , t )

ϕ̂( x⃗ , t )=∫ d3 k

2k 0(2π)
3 [ â(k⃗ )ei k⃗⋅⃗xe−i k0 t+â†( k⃗ )e−i k⃗⋅⃗x e+i k0 t ]

a( k⃗ ) ϕ( x⃗ , t )

ϕ̂† ( x⃗ , t )∣0 〉creates localized excitations:

is an observable: ϕ̂†( x⃗ , t )=ϕ̂( x⃗ , t )
⇒



  

Quantum Field Theory

propagator: probability amplitude of propagation between     and 

(compare with the more familiar       )

x x '

D( x−x ' )= 〈0∣ϕ̂(x) ϕ̂† (x ' )∣0 〉=∫ d 3 k
2k0(2π)

3 e−i k ( x−x ' ) 〈0∣â( k⃗ ) â†( k⃗ )∣0 〉

〈 x⃗∣U (t , t ' )∣x⃗ ' 〉



  

Quantum Field Theory

propagator: probability amplitude of propagation between     and 

(compare with the more familiar       )

x x '

D(x−x ' )= 〈0∣ϕ̂(x )ϕ̂† (x ' )∣0 〉=∫ d3k

2k0(2π)
3 e−i k (x−x ' ) 〈0∣â( k⃗ ) â† (k⃗ )∣0 〉

〈 x⃗∣U (t , t ' )∣⃗x ' 〉

x '=0
x

t

D≈e−mx

D≈e−imt

spacelike:

timelike:



  

Quantum Field Theory

propagator: probability amplitude of propagation between     and 

(compare with the more familiar       )

x x '

D( x−x ' )= 〈0∣ϕ̂(x) ϕ̂† (x ' )∣0 〉=∫ d 3 k
2k0(2π)

3 e−i k ( x−x ' ) 〈0∣â( k⃗ ) â†( k⃗ )∣0 〉

〈 x⃗∣U (t , t ' )∣x⃗ ' 〉

One can:

● passively observe two-point correlations 

between spacelike separations

x '=0
x

t

D≈e−mx

D≈e−imt

spacelike:

timelike:



  

Quantum Field Theory

propagator: probability amplitude of propagation between     and 

(compare with the more familiar       )

x x '

D(x−x ' )= 〈0∣ϕ̂(x )ϕ̂† (x ' )∣0 〉=∫ d3k

2k0(2π)
3 e−i k (x−x ' ) 〈0∣â( k⃗ ) â† (k⃗ )∣0 〉

〈 x⃗∣U (t , t ' )∣⃗x ' 〉

One can:

● passively observe two-point correlations 

between spacelike separations

● signal by measuring the field observable:

 

depends on the commutator [ ϕ̂( x) , ϕ̂† (x ' )]

x '=0
x

t

D≈e−mx

D≈e−imt

spacelike:

timelike:

[ 〈0∣ϕ̂(x ' )] ϕ̂(x) [ ϕ̂† (x ' )∣0 〉 ]− 〈0∣ϕ̂( x)∣0 〉



  

Bell Inequality Violations

ψ

+1−1

outcome A

setting S

B outcome

T  setting



  

[Wiseman&Cavalcanti]

relativistic
causality

decorrelating
explanation

common
causes

free
choice

Postulates

1. Free choice: A freely chosen action has no relevant causes. 

(Any cause of an event is in its past.)

2. Relativistic causality: The past is the past light-cone.

3. Common causes: If two events are correlated and neither is a
cause of the other, then they have a common cause that explains the
correlation.

4. Decorrelating explantion: A common cause C explains a
correlation only if conditioning on C eliminates the correlation.

Consequences

1. Agent-causation: If a relevant event A is correlated with a freely
chosen action, then that action is a cause of A.

2. Reichenbach: If two events are correlated, and neither is a cause 
of the other, then they have a common cause C, such that
conditioning on C eliminates the correlation.

3. Local causality: If two space-like separated events A and B are
correlated, then there is a set of events C in their common Minkowski
past such that conditioning on C eliminates the correlation.

4. No superdeterminism: All events on a space-like hypersurface are
uncorrelated with freely chosen actions subsequent to that SLH.

5. Locality: The probability of an observable event A is unchanged by
conditioning on a space-like-separated free choice b, even if it is
already conditioned on other events not in the future light-cone of b.

6. Local causality: If two space-like separated events are correlated,
then there is a set of events C in their common Minkowski past such
that conditioning on C eliminates the correlation.

Reichenbach's
principle

agent-
causation

no super-
determinism locality

local
causality

contradiction with
quantum phenomena

pre-
determination

contradiction with
quantum phenomena



  
[Wood&Spekkens]

What can causal inference tell us about Bell experiments?

Inputs: conditional independences

● between settings:

● no signalling:

S⊥T

A⊥T∣S , B⊥S∣T

A

S

B

T

λ

A

S

B

T

λ

A

S

B

T

λ

superluminal influences superdeterminism retrocausality

Some proposed causal structures:



  
[Wood&Spekkens]

What can causal inference tell us about Bell experiments?

Inputs: conditional independences

● between settings:

● no signalling:

S⊥T

A⊥T∣S , B⊥S∣T

A

S

B

T

λ

A

S

B

T

λ

A

S

B

T

λ

superluminal influences superdeterminism retrocausality

Some proposed causal structures:

Conditional independences reveal features of
causal structure if we exclude fine-tuning.

x=α z+ux

y=β z+γ x+u y

Z

X

Y

γ=0⇒Y ⊥ X ∣Z
γ=−β/α⇒Y ⊥(X ,Z )

⇒    Classical causal models cannot explain Bell inequality
violations because this would require fine-tuning. 



  

Quantum Causal Models

How to describe causal relations between quantum systems?



  

Ansatz I: via mathematical formalism

the universe and everything

local
laboratory

A
s setting

r result

Ai

Ao



  

Ansatz I: via mathematical formalism

the universe and everything

local
laboratory

A
s setting

r result

Ai

Ao

Probing is described by a quantum instrument:
● map from input to output states

● completely positive

● sum over results trace-preserving

M sr :ℒ(H i)→ℒ (H o)

(M sr⊗I B)(ρAi B
) ≥ 0 ∀ρ , s , r

Tr [Σ
r
M sr (ρ)] = 1 ∀ρ , s



  

Ansatz I: via mathematical formalism

the universe and everything

local
laboratory

A
s setting

r result

Ai

Ao

Probing is described by a quantum instrument:
● map from input to output states

● completely positive

● sum over results trace-preserving

Example 1: preparing an ensemble

Example 2: projective measurement

M sr :ℒ(H i)→ℒ (H o)

(M sr⊗I B)(ρAi B
) ≥ 0 ∀ρ , s , r

Tr [Σ
r
M sr (ρ)] = 1 ∀ρ , s

{ρs }s
M sr=ρo

s⊗Tr i

{Πr }r
M sr (ρ)=Tr i (Π

rρ)

(r fixed)

(s fixed)



  

Ansatz I: via mathematical formalism

the universe and everything

local
laboratory

A
s setting

r result

Ai

Ao

[Choi, Jamiolkowski]

Probing is described by a quantum instrument:
● map from input to output states

● completely positive

● sum over results trace-preserving

Equivalent representation: Choi operator

M sr :ℒ(H i)→ℒ (H o)

(M sr⊗I B)(ρAi B
) ≥ 0 ∀ρ , s , r

Tr [Σ
r
M sr (ρ)] = 1 ∀ρ , s

M sr∈ℒ(H i⊗H o):
M sr(ρ)=Tri [M io

srρi
T ]=ρ̃o

sr

transpose



  

Ansatz I: via mathematical formalism

the universe and everything

local
laboratory

A
s setting

r result

Ai

Ao

Probing is described by a quantum instrument:
● map from input to output states

● completely positive

● sum over results trace-preserving

Equivalent representation: Choi operator

M sr :ℒ(H i)→ℒ (H o)

(M sr⊗I B)(ρAi B
) ≥ 0 ∀ρ , s , r

Tr [Σ
r
M sr (ρ)] = 1 ∀ρ , s

M sr∈ℒ(H i⊗H o):
M sr(ρ)=Tri [M io

srρi
T ]=ρ̃o

sr

M sr ≥ 0 , Tr o [Σ
r
M io

sr ]= I i
transpose

[Choi, Jamiolkowski]



  

The environment is also described by an operator:

Example: environment prepares a state

Ansatz I: via mathematical formalism

P (r∣s)=Tr [M io
srW io ]

A
s

r

W io=ρi⊗ I o



  

The environment is also described by an operator:

Example: environment prepares a state

Physical constraints: probabilities must be
● non-negative

● normalized

Counter-example: 'looking for' a particular state

Ansatz I: via mathematical formalism

P (r∣s)=Tr [M io
srW io ]

Tr [M srW ]≥ 0 ∀M ⇒ W ≥ 0

Tr [Σr M srW ]= 1 ∀M

A
s

r

W io=ρi⊗ I o

W io=ρi⊗∣ψ 〉 〈ψ∣o

Tr [Σr M srW ]= 0 if M 00=1
d
I i⊗∣ϕ 〉 〈ϕ∣o , ∣ϕ 〉⊥∣ψ 〉



  

The environment also specifies all
relations between quantum systems:

Constraints:

Various related formalizations:
● quantum combs [Chiribella et al]
● process matrix [Oreshkov et al]
● causal map [Ried et al]

Ansatz I: via mathematical formalism

P (r , q∣s , t )=Tr [M Ai , Ao
sr ⊗M̃ Bi , Bo

tq W Ai , Ao , Bi ,Bo ]

Tr [ M̄ Ai , Ao , Bi , Bo
sr W ]≥ 0 ∀ M̄ ⇒ W ≥ 0

Tr [ Σr , q M Ai , Ao
sr ⊗M̃ Bi , Bo

tq W ]= 1 ∀M , M̃

A
s

r

B
t

q



  

Ansatz II: modification of classical causal models

directed acyclic graph
conditionals

+
P (G)

P (A∣G)
P (B∣AG)

G

Ai

B

Ao

I

P (B)=Σ
A
P (B∣A)P (A)

belief propagation

[Leifer&Spekkens]



  

Ansatz II: modification of classical causal models

directed acyclic graph
conditionals

+
P (G)

P (A∣G)
P (B∣AG)

G

Ai

B

Ao

I

intervention

Hilbert space

general: two
Hilbert spaces

P (B)=Σ
A
P (B∣A)P (A)

belief propagation

[Leifer&Spekkens]



  

Ansatz II: modification of classical causal models

directed acyclic graph
conditionals

+
P (G)

P (A∣G)
P (B∣AG)

G

Ai

B

Ao

I

intervention

Hilbert space

ρG≥0 , Tr ρG=1
density operator

general: two
Hilbert spaces

P (B)=Σ
A
P (B∣A)P (A)

belief propagation

[Leifer&Spekkens]



  

Ansatz II: modification of classical causal models

directed acyclic graph
conditionals

+
P (G)

P (A∣G)
P (B∣AG)

G

Ai

B

Ao

I

intervention

Hilbert space

ρG≥0 , Tr ρG=1
density operator

general: two
Hilbert spaces

P (B)=Σ
A
P (B∣A)P (A)

belief propagation
ρB=Tr A [ρB∣AρA ]

quantum belief
propagation

[Leifer&Spekkens]



  

Ansatz II: modification of classical causal models

directed acyclic graph
conditionals

+
P (G)

P (A∣G)
P (B∣AG)

G

Ai

B

Ao

I

intervention

Hilbert space

ρG≥0 , Tr ρG=1
density operator

general: two
Hilbert spaces

P (B)=Σ
A
P (B∣A)P (A)

belief propagation
ρB=Tr A [ρB∣AρA ]

quantum belief
propagation

quantum (causal) conditional

ρB∣A≡[E A→B⊗I A ] (∣Φ+ 〉 〈Φ+∣)T A

ρB∣A
T A ≥0 , Tr BρB∣A=I A[Leifer&Spekkens]



  

General causal maps and the relation to process matrices

Causal maps

Local interventions described by

ρo∣i
T (i)≥0 , Tro [Σ

r
ρo∣i

sr ]=I i

ρo∣i
sr∈ℒ(H i⊗H o) : ρ̃o

sr=Tr i [ρo∣i
sr ρi ]



  

General causal maps and the relation to process matrices

Causal maps

Local interventions described by

Probabilities of outcomes given settings

ρo∣i
T (i)≥0 , Tro [Σ

r
ρo∣i

sr ]=I i

ρo∣i
sr∈ℒ(H i⊗H o) : ρ̃o

sr=Tr i [ρo∣i
sr ρi ]

P (r ,q∣s , t )=Tr [ρAo∣Ai
sr ⊗ρ̃Bo∣Bi

tq τAi , Bi∣Ao , Bo ]



  

General causal maps and the relation to process matrices

Causal maps

Local interventions described by

Probabilities of outcomes given settings

Mathematical properties

ρo∣i
T (i)≥0 , Tro [Σ

r
ρo∣i

sr ]=I i

ρo∣i
sr∈ℒ(H i⊗H o) : ρ̃o

sr=Tr i [ρo∣i
sr ρi ]

P (r ,q∣s , t )=Tr [ρAo∣Ai
sr ⊗ρ̃Bo∣Bi

tq τAi , Bi∣Ao , Bo ]

τAi , Bi∣Ao , Bo
T (Ai , Bi) ≥ 0

Tr [ Σr ,q
ρAo∣Ai

sr ⊗ρ̃Bo∣Bi
tq τAi , Bi∣Ao , Bo ]= 1

∀ρAo∣Ai , ρ̃Bo∣Bi



  

General causal maps and the relation to process matrices

Causal maps

Local interventions described by

Probabilities of outcomes given settings

Mathematical properties

ρo∣i
T (i)≥0 , Tro [Σ

r
ρo∣i

sr ]=I i

ρo∣i
sr∈ℒ(H i⊗H o) : ρ̃o

sr=Tr i [ρo∣i
sr ρi ]

P (r ,q∣s , t )=Tr [ρAo∣Ai
sr ⊗ρ̃Bo∣Bi

tq τAi , Bi∣Ao , Bo ]

τAi , Bi∣Ao , Bo
T (Ai , Bi) ≥ 0

Tr [ Σr ,q
ρAo∣Ai

sr ⊗ρ̃Bo∣Bi
tq τAi , Bi∣Ao , Bo ]= 1

∀ρAo∣Ai , ρ̃Bo∣Bi

P (r ,q∣s , t )=Tr [M Ai , Ao
sr ⊗M̃ Bi , Bo

tq W ]

W ≥ 0

Tr [ Σr ,q
M Ai , Ao

sr ⊗M̃ Bi , Bo
tq W ]= 1 ∀M , M̃

M sr∈ℒ(H i⊗H o): Tr i [M io
srρi

T ]=ρ̃o
sr

M sr ≥ 0 , Tr o [Σ
r
M io

sr ]= I i

Process matrices

Local interventions described by

Probabilities of outcomes given settings

Mathematical properties



  
[Leifer&Spekkens]

Inference for quantum systems

Case 1: retrodiction of cause given effect

P (Z ,Q)=P (Z∣Q)P (Q)

→ P (Q∣Z )=P (Z ,Q)
P (Z )

Classical Bayesian inversion:

Q

Z

ρQ

ρZ∣Q



  
[Leifer&Spekkens, Horsman et al] 

Inference for quantum systems

Case 1: retrodiction of cause given effect

P (Z ,Q)=P (Z∣Q)P (Q)

→ P (Q∣Z )=P (Z ,Q)
P (Z )

Classical Bayesian inversion:

Q

Z

Quantum version:

ρQ

ρZ∣Q

ρQ∣Z=(ρQ

1
2 ⊗ρZ

−1
2 )ρZ∣Q (ρQ

1
2 ⊗ρZ

−1
2 )

Note: same mathematical properties
as causal conditionals

ρQ∣Z
T (Z )≥ 0

ρZ ,Q=ρQ

1
2 ρZ∣QρQ

1
2 ≡ρZ∣Q∗ρQ



  

Inference for quantum systems

Case 1: retrodiction of cause given effect

P (Z ,Q)=P (Z∣Q)P (Q)

→ P (Q∣Z )=P (Z ,Q)
P (Z )

Classical Bayesian inversion:

Q

Z

Q

Z C

Case 2: inference via a common cause

P (C∣Z )=Σ
q
P (C ,Q=q∣Z )

=Σ
q
P (C∣Q=q)P (Q=q∣Z )

Quantum version:

ρQ

ρZ∣Q

ρQ∣Z=(ρQ

1
2 ⊗ρZ

−1
2 )ρZ∣Q (ρQ

1
2 ⊗ρZ

−1
2 )

Classically,

Note: same mathematical properties
as causal conditionals

ρQ∣Z
T (Z )≥ 0

ρZ ,Q=ρQ

1
2 ρZ∣QρQ

1
2 ≡ρZ∣Q∗ρQ

[Leifer&Spekkens, Horsman et al] 



  

Inference for quantum systems

Case 1: retrodiction of cause given effect

P (Z ,Q)=P (Z∣Q)P (Q)

→ P (Q∣Z )=P (Z ,Q)
P (Z )

Classical Bayesian inversion:

Q

Z

Q

Z C

Case 2: inference via a common cause

P (C∣Z )=Σ
q
P (C ,Q=q∣Z )

=Σ
q
P (C∣Q=q)P (Q=q∣Z )

Quantum version:

ρQ

ρZ∣Q

ρZ ,Q=ρQ

1
2 ρZ∣QρQ

1
2 ≡ρZ∣Q∗ρQ

ρQ∣Z=(ρQ

1
2 ⊗ρZ

−1
2 )ρZ∣Q (ρQ

1
2 ⊗ρZ

−1
2 )

Classically,

ρC∣Z=TrQ (ρC∣QρQ∣Z )

Note: same mathematical properties
as causal conditionals

ρQ∣Z
T (Z )≥ 0

Quantum version:

Note:
● different mathematical properties

→ conditionals reflect causal structure
● no simple form for joint state:

ρC∣Q
T (Q)≥ 0 , ρQ∣Z

T (Z )≥ 0 ⇒ ρC∣Z ≥ 0

ρC∣Q∗(ρZ∣Q∗ (ρQ⊗ρZ
−1 ))

≠(ρC∣Q∗ρZ∣Q)∗ (ρQ⊗ρZ
−1)≠...

[Leifer&Spekkens, Horsman et al, Ried et al] 



  

Causal Structure in a Quantum World

Given an operator relating several quantum systems,

● Can it be decomposed into separate causal relations?

● What kinds of causal relations can there be?

● How to classify the possible causal relations?



  

Causal Structure in a Quantum World

Causal Loops



  

Case 1

W=I+Z⊗Z=(1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)

Causal loops revisited

A
s

r



  

Case 1

Alice measures in the Z basis, then flips the bit:

W=I+Z⊗Z=(1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)

Causal loops revisited

{M 00=∣0 〉 〈0∣i⊗∣1 〉 〈1∣o
M 01=∣1 〉 〈1∣i⊗∣0 〉 〈0∣o

⇒ Σ
r
P (r∣s=0)=Tr [Σ

r
M io

0rW io ] = 0

(single s)

Does not satisfy physical constraints.

A
s

r

⇒



  

Case 2

W=(I+Z⊗Z )AoBi⊗( I+Z⊗Z )Bo Ai

Causal loops revisited

A
s

r

B
t

q



  

Case 2

W=(I+Z⊗Z )AoBi⊗( I+Z⊗Z )Bo Ai

Causal loops revisited

A
s

r

B
t

q



  

Case 2

Note: Constraints on probabilities rule out
(at least some types of) causal loops.

W=(I+Z⊗Z )AoBi⊗( I+Z⊗Z )Bo Ai

Causal loops revisited

Alice measures and flips, Bob just measures:

{M 00=∣0 〉 〈0∣Ai⊗∣1 〉 〈1∣Ao

M 01=∣1 〉 〈1∣Ai⊗∣0 〉 〈0∣Ao

A
s

r

B
t

q

{M̃ 00=∣0 〉 〈0∣Bi⊗∣0 〉 〈0∣Bo

M̃ 01=∣1 〉 〈1∣Bi⊗∣1 〉 〈1∣Bo

⇒ Σ
r ,q

P (rq∣st )=Tr [ Σr ,q
M Ai , Ao

sr ⊗M̃ Bi , Bo
tq W ]= 0

⇒ Does not satisfy physical constraints.



  

Case 3

Causal loops revisited

W= 1
2
W B<A+

1
2
W A<B

= 1
8 ( I+ 1

√2
Z Bo⊗Z Ai )+ 1

8 ( I+ 1

√2
Z Bi⊗X A1

⊗Z Ao)

A
s

r

B
t

q



  

Case 3

Causal loops revisited

W= 1
2
W B<A+

1
2
W A<B

= 1
8 ( I+ 1

√2
Z Bo⊗Z Ai )+ 1

8 ( I+ 1

√2
Z Bi⊗X A1

⊗Z Ao)

λ B<A=
1
4 (1± 1

√2 ) ; λA<B=
1
4 (1± 1

√2 )
check positivity:

A
s

r

B
t

q



  

Case 3

Causal loops revisited

W= 1
2
W B<A+

1
2
W A<B

= 1
8 ( I+ 1

√2
Z Bo⊗Z Ai )+ 1

8 ( I+ 1

√2
Z Bi⊗X A1

⊗Z Ao)

λ B<A=
1
4 (1± 1

√2 ) ; λA<B=
1
4 (1± 1

√2 )
check positivity:

check normalization:

A
s

r

B
t

q

Tr [ Σr , q M Ai , Ao
sr ⊗M̃ Bi , Bo

tq W ]= 1 ∀M , M̃

(M sr ≥ 0 , Tro [Σr M io
sr ]=I i )



  

Case 4

[Oreshkov et al]

W= 1
4 ( I+ 1

√2
Z Bo⊗Z Ai+

1

√2
Z Bi⊗X Ai⊗Z Ao )

= 1
8 ( I+ 2

√2
Z Bo⊗Z Ai )+ 1

8 ( I+ 2
√2

Z Bi⊗X Ai⊗Z Ao )

Causal loops revisited

A
s

r

B
t

q



  

Case 4

● naive attempt at convex decomposition fails:

[Oreshkov et al]

W= 1
4 ( I+ 1

√2
Z Bo⊗Z Ai+

1

√2
Z Bi⊗X Ai⊗Z Ao )

= 1
8 ( I+ 2

√2
Z Bo⊗Z Ai )+ 1

8 ( I+ 2
√2

Z Bi⊗X Ai⊗Z Ao )

Causal loops revisited

λB<A=
1
4
(1±√2 ) ; λA<B=

1
4
(1±√2 )

A
s

r

B
t

q



  

Case 4

● naive attempt at convex decomposition fails:

● yet Wq is a valid process:

[Oreshkov et al]

W= 1
4 ( I+ 1

√2
Z Bo⊗Z Ai+

1

√2
Z Bi⊗X Ai⊗Z Ao )

= 1
8 ( I+ 2

√2
Z Bo⊗Z Ai )+ 1

8 ( I+ 2
√2

Z Bi⊗X Ai⊗Z Ao )

Causal loops revisited

λB<A=
1
4
(1±√2 ) ; λA<B=

1
4
(1±√2 )

A
s

r

B
t

q

Tr [ Σ
r , q

M sr⊗M̃ tqW ]= 1 ∀M , M̃

λW∈{0, 1
4 }≥0



  

The causal separability game

A
s

r

B
t

q

The task:

● if j=0, Alice must signal Bob: return q=s
● if j=1, Bob must signal Alice: return r=t

 

[Oreshkov et al]



  

The causal separability game

A
s

r

B
t

q

The task:

● if j=0, Alice must signal Bob: return q=s
● if j=1, Bob must signal Alice: return r=t

Success probability given a fixed causal order:

Success probability using

psuc≤
3
4

[Oreshkov et al]

W= 1
4 ( I+ 1

√2
Z Bo⊗Z Ai+

1

√2
Z Bi⊗X Ai⊗Z Ao)



  

The causal separability game

A
s

r

B
t

q

The task:

● if j=0, Alice must signal Bob: return q=s
● if j=1, Bob must signal Alice: return r=t

Success probability given a fixed causal order:

Success probability using

● if j=0, Alice measures in Z basis
● if j=1, Alice measures in X basis 

psuc≤
3
4

[Oreshkov et al]

W= 1
4 ( I+ 1

√2
Z Bo⊗Z Ai+

1

√2
Z Bi⊗X Ai⊗Z Ao)

⇒ psuc=
2+√2

4



  

Causal witnesses

A
s

r

B
t

q

More generally, one can find observables

S such that, for all Wsep of the form

it holds that

[Araújo et al]

W sep=qW B<A+(1−q)W A<B

Tr [S W sep ]≥0

Compare with witnesses of entanglement:

Tr [ S̄ ρsep ]≥0 ∀ ρsep=Σ
j
q jρA

j⊗ρB
j

Distinction: 
● witnesses test separability, which is

a mathematical feature that is
defined within the framework of
quantum mechanics

● causal inequalities are device-
independent, statistics-based tests



  

The quantum switch

[Chiribella et al]



  

The quantum switch

[Chiribella et al]

● prepare a superposition of the control qubit

● post-select on still having a superposition afterwards



  

Applications of indefinite causal order

Exchange evaluation game: exponential advantage in communication complexity 
[Guérin et al]   

Testing permutation of unitaries:
polynomial reduction in query
complexity 

[Colnaghi et al, Araújo et al]

A

B

B

A

=?



  

[Procopio]

Experimental superposition of orders of quantum gates



  

[Procopio]

Experimental superposition of orders of quantum gates

U1

U1

U2

U2

laboratory time

How to count the number of
uses of the black boxes?

● points in spacetime

● internal degree of freedom



  

Superposition of causal structures using general relativity

[Feix&Brukner]

M
τA=2

τB=2

A precedes B

Alice      Bob

M
τB=2

τA=2

B precedes A

Alice      Bob



  

Superposition of causal structures using general relativity

[Feix&Brukner]

M
τA=2

τB=2

A precedes B

Alice      Bob

M
τB=2

τA=2

B precedes A

Alice      Bob

required parameters:
for a spatial superposition of     need time resolution of
experimentally feasible:
spatial superposition of  , time resolution Δ x=10−6m , M≈10−21 g

Δ x=10−3 m, M=1g 10−27

10−18



  

Causal Structure in a Quantum World

Combinations of causal relations



  

Testbed for combining causal relations
within a well-defined causal order:

cause-effectcommon cause

A

B

A

B

P(A , B)

P(B∣A)

P (A)



  

Mixing common-cause and cause-effect relations

coin toss J

purely common-cause (CC) purely cause-effect (CE)

A

B
A

B



  

P(B|A,λ,heads)=P(B|λ)

purely common-cause

P(B|A,λ,tails)=P(B|A)

purely cause-effect

Mixing common-cause and cause-effect relations

A

B

J

λ

⇒

⇒



  

P(B|A,λ,heads)=P(B|λ)

purely common-cause

P(B|A,λ,tails)=P(B|A)

purely cause-effect

Mixing common-cause and cause-effect relations

A

B

λ

⇒

⇒

Probabilistic mixture: 

Physical mixture: 

P(B|A,λ,heads)=P(B|A,λ)

P(B|A,λ,tails)=P(B|A,λ)

both CC and CE⇒
J

Note: both of these ways of combining causal relations are classical.



  

Probabilistic mixture: 

Physical mixture: 



  

How to detect a combination of two causal influences?
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Berkson's paradox
    (extended edition)

all applicants

faculty

teaching
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faculty
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D

B

C
A

P(CD|B)

Berkson-type
induced correlations:

- classical

- quantum

post-select

induce correlations

{E B
b }⇒{τCD

b }



  

purely cause-effect 
or purely common-cause:

weak correlations

Distinguishing combinations of causal structures

C

B

D
A

independent

P (CD∣B)

C

B

D
A

P (CD∣B)

probabilistic mixture:

C

B

D
A

C

B

D
A

or

(1-q) + q ⇒

⇒



  

physical mixture (not probabilistic):

C

B

D
A

strong correlations

P (CD∣B)

⇒
B=D⊕λ
C=λ

for example



  

physical mixture (not probabilistic):

C

B

D
A

strong correlations

P (CD∣B)

⇒
B=D⊕λ
C=λ

for example

then

B=0
⇒C=D

perfect correlation



  

physical mixture (not probabilistic):

C

B

D
A

strong correlations

P (CD∣B)

⇒
B=D⊕λ
C=λ

for example

then

B=0
⇒C=D

perfect correlation

Conversely, strong correlations 
rule out a probabilistic mixture.

⇒



  

physical mixture (not probabilistic):

C

B

D
A

strong correlations

P (CD∣B)

C

B

D
A

τ(CD∣B)≠ΣiρC
(i)⊗ρD

(i )

stronger-than-classical
correlations

⇒

intrinsically quantum combination:

⇒

for example

then

B=0
⇒C=D

perfect correlation

B=D⊕λ
C=λ



  

B

A

preparation

coupling

local swap

cause-
effect

common
cause

coupling:

Two quantum variables

with tunable causal relation

A

B
A B



  

B

A

U

cause-
effect

common
cause

coupling: U=cos θ2 1+i sin θ
2 S

θ=0 θ=π

A

B
A B



  

ρDλ
(0)=U † (ρB⊗

1
2
1)U

=1
2

U † [∣00 〉 〈00∣+∣01 〉 〈01∣]U

=1
2
∣00 〉 〈00∣+1

2
∣Ψ− 〉 〈Ψ−∣

ρB=∣0 〉 〈0∣

C

D

B

λ

Berkson-type induced entanglement

post-selection

induced state



  

ii)

ii)

a)

F

LCR Z

PBS

HWP

QWP
FilterAPD

Mirror
NPBS

Phase 
Control

BBO

BiBO

C BD

Gate

State Preparation

E

LCR X

C

B

D E

ii)

i)

b )

i)

ii)

F

F

partial swap

polarization
measurement

U=cos θ2 1+i sin θ
2 S

dephasing
  prob. p

dephasing
  prob. p

polarization
measurement

[MacLean et al, Nat Comm 8]



  
fully

quantum

effectively
classical
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Induced negativity 
witnesses non-classical causal structure



  

Take-home messages and open questions 



  

Take-home messages and open questions 

Causal models framework: mathematical and conceptual toolbox
● classical: rigorous definition of causation, methods for inferring causal relations and

deriving predictions from this information
● quantum: description of relations among quantum systems in terms of operators that can

(at least in part) be interpreted causally, distinction between causation and inference

Causal models provide a clear language and context for analysing many counter-
intuitive phenomena in quantum mechanics, such as the apparent retrocausality
in delayed-choice experiments, propagation outside the lightcone in quantum
field theory, and the tangle of assumptions the lead to Bell inequalities.

The conjunction of all the principles that hold in classical causal models (Reichenbach,
no fine-tuning etc) is at odds with the predictions of quantum mechanics. However, it
is difficult to determine which of these principles are violated. More work is needed to
develop a convincing, consistent account of causality that allows one to give up any of
these princples. 



  

Take-home messages and open questions 

Two proposals for how quantum mechanics might handle causal loops:
● allow generic causal loops but give up linearity, which leads to

unusual information flow
● preserve linearity but allow only a restricted class of causal loops

Non-classical causal relations
● There are a few concrete examples of such scenarios, but a systematic

account of all the possibilities is still outstanding.
● Some have been realized experimentally, but all experiments so far were

embedded in a background spacetime with well-defined causal order. It
would be interesting to overcome this limitation. 

● Non-classical causal structures are known to be resources for certain
tasks. What other advantages can be extracted from these phenomena
and what fundamental insights does this entail?
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