Kochen-Specker contextuality
 Lecture 1

Ana Belén Sainz

Solstice of Foundations summer school - ETH Zurich
19/06/2017

Kochen-Specker contextuality

Kochen-Specker contextuality

Some quantum statistics are incompatible with

- deterministic assignments of values to all the observables
- satisfying the compatibility relations inherited from quantum mechanics
(or mixtures of these models.)

Kochen-Specker contextuality

Some quantum statistics are incompatible with

- deterministic assignments of values to all the observables
- satisfying the compatibility relations inherited from quantum mechanics
(or mixtures of these models.)

Kochen-Specker contextuality

Some quantum statistics are incompatible with

- deterministic assignments of values to all the observables
- satisfying the compatibility relations inherited from quantum mechanics
(or mixtures of these models.)

Kochen-Specker contextuality

Some quantum statistics are incompatible with

- deterministic assignments of values to all the observables
- satisfying the compatibility relations inherited from quantum mechanics
(or mixtures of these models.)

Kochen-Specker contextuality

Some quantum statistics are incompatible with

- deterministic assignments of values to all the observables
- satisfying the compatibility relations inherited from quantum mechanics
(or mixtures of these models.)

$p(a \mid x),\langle x\rangle$

Non-contextual, deterministic, hidden-variable model:

$$
\Lambda: p(a \mid A, \Lambda) \in\{0,1\}
$$

Klyachko-Can-Binicioğlu-Shumovsky (KCBS)

Klyachko-Can-Binicioğlu-Shumovsky (KCBS)

Non-contextual hidden variable model (deterministic): $\lambda: A_{i} \rightarrow \pm 1$

Distribution over hidden variables: $p(\lambda)$

Klyachko-Can-Binicioğlu-Shumovsky (KCBS)

Non-contextual hidden variable model
(deterministic): $\lambda: A_{i} \rightarrow \pm 1$
Distribution over hidden variables: $p(\lambda)$

$$
K=\left\langle A_{1} A_{2}\right\rangle+\left\langle A_{2} A_{3}\right\rangle+\left\langle A_{3} A_{4}\right\rangle+\left\langle A_{4} A_{5}\right\rangle+\left\langle A_{5} A_{1}\right\rangle
$$

Klyachko-Can-Binicioğlu-Shumovsky (KCBS)

Non-contextual hidden variable model (deterministic): $\lambda: A_{i} \rightarrow \pm 1$

Distribution over hidden variables: $p(\lambda)$

$$
K=\left\langle A_{1} A_{2}\right\rangle+\left\langle A_{2} A_{3}\right\rangle+\left\langle A_{3} A_{4}\right\rangle+\left\langle A_{4} A_{5}\right\rangle+\left\langle A_{5} A_{1}\right\rangle
$$

$$
\mathrm{NCHV} \rightarrow \min a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{5}+a_{5} a_{1}
$$

$$
\text { st } \quad a_{i}= \pm 1 \quad \forall i
$$

Klyachko-Can-Binicioğlu-Shumovsky (KCBS)

Non-contextual hidden variable model (deterministic): $\lambda: A_{i} \rightarrow \pm 1$

Distribution over hidden variables: $p(\lambda)$

$$
K=\left\langle A_{1} A_{2}\right\rangle+\left\langle A_{2} A_{3}\right\rangle+\left\langle A_{3} A_{4}\right\rangle+\left\langle A_{4} A_{5}\right\rangle+\left\langle A_{5} A_{1}\right\rangle \underset{\mathrm{NCHV}}{\geq}-3
$$

$$
\mathrm{NCHV} \rightarrow \min a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{5}+a_{5} a_{1}
$$

$$
\text { st } \quad a_{i}= \pm 1 \quad \forall i
$$

KCBS: quantum violation

KCBS: quantum violation

KCBS: quantum violation

Quantum mechanics violates the KCBS inequality

State-independent contextuality

Peres-Mermin square: nine observables $\{A, B, C, a, b, c, \alpha, \beta, \gamma\}$

$A=\sigma_{z} \otimes \mathbb{1}$	$B=\mathbb{1} \otimes \sigma_{z}$	$C=\sigma_{z} \otimes \sigma_{z}$
$a=\mathbb{1} \otimes \sigma_{x}$	$b=\sigma_{x} \otimes \mathbb{1}$	$c=\sigma_{x} \otimes \sigma_{x}$
$\alpha=\sigma_{z} \otimes \sigma_{x}$	$\beta=\sigma_{x} \otimes \sigma_{z}$	$\gamma=\sigma_{y} \otimes \sigma_{y}$

State-independent contextuality

Peres-Mermin square: nine observables $\{A, B, C, a, b, c, \alpha, \beta, \gamma\}$

$$
\begin{array}{|c|c|c|}
\hline A=\sigma_{z} \otimes \mathbb{1} & B=\mathbb{1} \otimes \sigma_{z} & C=\sigma_{z} \otimes \sigma_{z} \\
\hline a=\mathbb{1} \otimes \sigma_{x} & b=\sigma_{x} \otimes \mathbb{1} & c=\sigma_{x} \otimes \sigma_{x} \\
\hline \alpha=\sigma_{z} \otimes \sigma_{x} & \beta=\sigma_{x} \otimes \sigma_{z} & \gamma=\sigma_{y} \otimes \sigma_{y} \\
\hline \mathbb{1} & \mathbb{1} \\
\cline { 1 - 3 } & \mathbb{1} & -\mathbb{1}
\end{array}
$$

State-independent contextuality

Peres-Mermin square: nine observables $\{A, B, C, a, b, c, \alpha, \beta, \gamma\}$

$$
\begin{array}{|c|c|c|}
\hline A=\sigma_{z} \otimes \mathbb{1} & B=\mathbb{1} \otimes \sigma_{z} & C=\sigma_{z} \otimes \sigma_{z} \\
\hline a=\mathbb{1} \otimes \sigma_{x} & b=\sigma_{x} \otimes \mathbb{1} & c=\sigma_{x} \otimes \sigma_{x} \\
\hline \alpha=\sigma_{z} \otimes \sigma_{x} & \beta=\sigma_{x} \otimes \sigma_{z} & \gamma=\sigma_{y} \otimes \sigma_{y} \\
\hline \mathbb{1} & \mathbb{1} \\
\hline
\end{array}
$$

$$
K=\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \underset{\overline{\mathrm{QM}}}{ } 6
$$

State-independent contextuality

Peres-Mermin square: nine observables $\{A, B, C, a, b, c, \alpha, \beta, \gamma\}$

$$
\begin{gathered}
\begin{array}{|c|c|c|}
\hline A=\sigma_{z} \otimes \mathbb{1} & B=\mathbb{1} \otimes \sigma_{z} & C=\sigma_{z} \otimes \sigma_{z} \\
\hline a=\mathbb{1} \otimes \sigma_{x} & b=\sigma_{x} \otimes \mathbb{1} & c=\sigma_{x} \otimes \sigma_{x} \\
\mathbb{1} \\
\hline \alpha=\sigma_{z} \otimes \sigma_{x} & \beta=\sigma_{x} \otimes \sigma_{z} & \gamma=\sigma_{y} \otimes \sigma_{y} \\
\mathbb{1} \\
\cline { 1 - 3 } \mathbb{1} & -\mathbb{1} & -\mathbb{1} \\
K=\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \underset{\mathrm{QM}}{ } 6 \\
\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \underset{\mathrm{NCHV}}{\leq} 4
\end{array}
\end{gathered}
$$

State-independent contextuality

Peres-Mermin square: nine observables $\{A, B, C, a, b, c, \alpha, \beta, \gamma\}$

$$
\begin{gathered}
\begin{array}{c|c|c|}
\hline A=\sigma_{z} \otimes \mathbb{1} & B=\mathbb{1} \otimes \sigma_{z} & C=\sigma_{z} \otimes \sigma_{z} \\
\hline a=\mathbb{1} \otimes \sigma_{x} & b=\sigma_{x} \otimes \mathbb{1} & c=\sigma_{x} \otimes \sigma_{x} \\
\mathbb{1} \\
\hline \alpha=\sigma_{z} \otimes \sigma_{x} & \beta=\sigma_{x} \otimes \sigma_{z} & \gamma=\sigma_{y} \otimes \sigma_{y} \\
\mathbb{1} \\
\hline \mathbb{1} & \mathbb{1} & -\mathbb{1} \\
K=\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \underset{\overline{Q M}}{ } 6 \\
\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \underset{N C H V}{\leq} 4
\end{array}
\end{gathered}
$$

Quantum mechanics violates the inequality for all quantum states.

Inequalities from hypergraphs

Cabello, Severini and Winter \rightarrow inequalities from the compatibility structure of events

Inequalities from hypergraphs

Cabello, Severini and Winter \rightarrow inequalities from the compatibility structure of events

What is an event?

Inequalities from hypergraphs

Cabello, Severini and Winter \rightarrow inequalities from the compatibility structure of events

What is an event? $\quad \rightarrow \quad$ measured context and obtained outcomes

Inequalities from hypergraphs

Cabello, Severini and Winter \rightarrow inequalities from the compatibility structure of events

What is an event? $\quad \rightarrow \quad$ measured context and obtained outcomes

Example: KCBS

$$
\left\{\left(a_{i}, a_{i+1} \mid A_{i}, A_{i+1}\right) \mid a_{i}, a_{i+1}= \pm 1,1 \leq i \leq 5\right\}
$$

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

$$
\begin{aligned}
& \text { 'yes' } \rightarrow 1 \text {, 'no' } \rightarrow 0, \\
& \quad \sum_{i=1}^{5}\left\langle P_{i}\right\rangle \underset{\mathrm{NCHV}}{\leq} 2 .
\end{aligned}
$$

KCBS: second formulation

Five yes/no questions: $\left\{P_{i}, 1 \leq i \leq 5\right\}$,

- P_{i} and P_{i+1} are compatible,
- P_{i} and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'.

What is the maximum number of 'yes' that we can obtain?

$$
\begin{aligned}
& \text { 'yes' } \rightarrow 1 \text {, 'no' } \rightarrow 0, \\
& \qquad \sum_{i=1}^{5}\left\langle P_{i}\right\rangle \underset{\mathrm{NCHV}}{\leq} 2 .
\end{aligned}
$$

First formulation of KCBS?

$$
\begin{aligned}
A_{i}=2 P_{i}-1, \quad & \Rightarrow \quad\left\langle A_{i} A_{i+i}\right\rangle=-2\left\langle P_{i}\right\rangle-2\left\langle P_{i+1}\right\rangle+1 \\
& \sum_{i}\left\langle A_{i} A_{i+1}\right\rangle \underset{\mathrm{NCHV}}{\geq}-3 .
\end{aligned}
$$

KCBS \rightarrow Inequalities from graphs

Graph:

- Vertices: Events of the scenario. $\left\{\left(0 \mid P_{i}\right),\left(1 \mid P_{i}\right)\right\}_{i}$
- Edges: join exclusive events

KCBS \rightarrow Inequalities from graphs

Graph:

- Vertices: Events of the scenario. $\left\{\left(0 \mid P_{i}\right),\left(1 \mid P_{i}\right)\right\}_{i}$

$$
\sum_{i=1}^{5} \alpha_{i} p\left(1 \mid P_{i}\right)+\beta_{i} p\left(0 \mid P_{i}\right) \underset{\mathrm{NCHV}}{\leq} ?
$$

- Edges: join exclusive events

KCBS \rightarrow Inequalities from graphs

Graph:

- Vertices: Events of the scenario. $\left\{\left(0 \mid P_{i}\right),\left(1 \mid P_{i}\right)\right\}_{i}$

$$
\sum_{i=1}^{5} \alpha_{i} p\left(1 \mid P_{i}\right)+\beta_{i} p\left(0 \mid P_{i}\right) \underset{N \overline{C H V}}{\leq} ?
$$

- Edges: join exclusive events

Equip the graph's vertices with weights $(G, w): \quad w_{\left(1 \mid P_{i}\right)}=\alpha_{i}, w_{\left(0 \mid P_{i}\right)}=\beta_{i}$

KCBS \rightarrow Inequalities from graphs

Graph:

- Vertices: Events of the scenario. $\left\{\left(0 \mid P_{i}\right),\left(1 \mid P_{i}\right)\right\}_{i}$

$$
\sum_{i=1}^{5} \alpha_{i} p\left(1 \mid P_{i}\right)+\beta_{i} p\left(0 \mid P_{i}\right) \underset{N C H V}{\leq} ?
$$

- Edges: join exclusive events

Equip the graph's vertices with weights $(G, w): \quad w_{\left(1 \mid P_{i}\right)}=\alpha_{i}, w_{\left(0 \mid P_{i}\right)}=\beta_{i}$

The NCHV bound is given by the weighted independence number of (G,w): α

KCBS \rightarrow Inequalities from graphs

Graph:

- Vertices: Events of the scenario. $\left\{\left(0 \mid P_{i}\right),\left(1 \mid P_{i}\right)\right\}_{i}$

$$
\sum_{i=1}^{5} \alpha_{i} p\left(1 \mid P_{i}\right)+\beta_{i} p\left(0 \mid P_{i}\right) \underset{N C H V}{\leq} ?
$$

- Edges: join exclusive events

Equip the graph's vertices with weights $(G, w): \quad w_{\left(1 \mid P_{i}\right)}=\alpha_{i}, w_{\left(0 \mid P_{i}\right)}=\beta_{i}$
The NCHV bound is given by the weighted independence number of (G,w): α

Example: $\alpha_{i}=1, \quad \beta_{i}=0$

KCBS \rightarrow Inequalities from graphs

Graph:

- Vertices: Events of the scenario. $\left\{\left(0 \mid P_{i}\right),\left(1 \mid P_{i}\right)\right\}_{i}$

$$
\sum_{i=1}^{5} \alpha_{i} p\left(1 \mid P_{i}\right)+\beta_{i} p\left(0 \mid P_{i}\right) \underset{N C H V}{\leq} ?
$$

- Edges: join exclusive events

Equip the graph's vertices with weights $(G, w): \quad w_{\left(1 \mid P_{i}\right)}=\alpha_{i}, w_{\left(0 \mid P_{i}\right)}=\beta_{i}$
The NCHV bound is given by the weighted independence number of (G,w): α

Example: $\alpha_{i}=1, \quad \beta_{i}=0$

Independence number of the pentagon:

$$
\begin{gathered}
\alpha=2 \\
\sum_{i=1}^{5}\left\langle P_{i}\right\rangle \underset{N C H V}{\leq} 2 .
\end{gathered}
$$

KCBS \rightarrow Inequalities from graphs

Quantum violation?

Weighted Lovász number of $(G, w): \vartheta(G, w)$

KCBS \rightarrow Inequalities from graphs

Quantum violation?

Weighted Lovász number of $(G, w): \vartheta(G, w)$

"Orthogonal representation": $|\Psi\rangle,\left\{\left|\phi_{v}\right\rangle\right\}_{v}$

- unit vectors

$$
\vartheta(G, w)=\sum_{v \in V} w(v)\left|\left\langle\phi_{v} \mid \Psi\right\rangle\right|^{2} .
$$

- $\left\langle\phi_{v} \mid \phi_{u}\right\rangle=0$ if $u \widetilde{G}^{v}$.

KCBS \rightarrow Inequalities from graphs

Quantum violation?

$$
\text { Weighted Lovász number of }(G, w): \vartheta(G, w)
$$

"Orthogonal representation": $|\Psi\rangle,\left\{\left|\phi_{v}\right\rangle\right\}_{v}$

- unit vectors

$$
\vartheta(G, w)=\sum_{v \in V} w(v)\left|\left\langle\phi_{v} \mid \Psi\right\rangle\right|^{2} .
$$

- $\left\langle\phi_{v} \mid \phi_{u}\right\rangle=0$ if $u \underset{G}{\sim} v$.

$$
\begin{gathered}
\text { If }|\Psi\rangle \rightarrow \text { quantum state, }\left|\phi_{v}\right\rangle\left\langle\phi_{v}\right| \rightarrow \text { projector associated to answer } v: \\
\text { quantum correlations! }
\end{gathered}
$$

KCBS \rightarrow Inequalities from graphs

Quantum violation?

$$
\text { Weighted Lovász number of }(G, w): \vartheta(G, w)
$$

"Orthogonal representation": $|\Psi\rangle,\left\{\left|\phi_{v}\right\rangle\right\}_{v}$

- unit vectors

$$
\vartheta(G, w)=\sum_{v \in V} w(v)\left|\left\langle\phi_{v} \mid \Psi\right\rangle\right|^{2} .
$$

- $\left\langle\phi_{v} \mid \phi_{u}\right\rangle=0$ if $u \underset{G}{\sim} v$.

$$
\begin{gathered}
\text { If }|\Psi\rangle \rightarrow \text { quantum state, }\left|\phi_{v}\right\rangle\left\langle\phi_{v}\right| \rightarrow \text { projector associated to answer } v: \\
\text { quantum correlations! }
\end{gathered}
$$

Example: KCBS

$$
\vartheta(G, w)=\sqrt{5}>2
$$

$\rightarrow y$

Bell scenarios: CHSH

Compatible measurements: $\left\{A_{i}, B_{j}\right\}$

Bell scenarios: CHSH

Compatible measurements: $\left\{A_{i}, B_{j}\right\}$

Events: $\{(a b \mid x y): a, b, x, y=0,1\}$

Bell scenarios: CHSH

Compatible measurements: $\left\{A_{i}, B_{j}\right\}$

Events: $\{(a b \mid x y): a, b, x, y=0,1\}$

Local Orthogonality: two events are orthogonal if there is a party that has chosen the same measurement in both, but obtained different outcomes.

Example: $(00 \mid 00) \perp(10 \mid 01)$ but $(00 \mid 00) \not \perp(01 \mid 01)$.

Bell scenarios: CHSH

Bell scenarios: CHSH

CHSH inequality:

$$
\sum_{\substack{a b b \\ a=b}} p(a b \mid 00)+\sum_{\substack{a b \\ a=b}} p(a b \mid 10)+\sum_{\substack{a b \\ a=b}} p(a b \mid 01)+\sum_{\substack{a b \\ a \neq b}} p(a b \mid 11) \underset{N \overline{C H V}}{\leq} 3
$$

Bell scenarios: CHSH

CHSH inequality:

$$
\sum_{\substack{a b b \\ a=b}} p(a b \mid 00)+\sum_{\substack{a b \\ a=b}} p(a b \mid 10)+\sum_{\substack{a b \\ a=b}} p(a b \mid 01)+\sum_{\substack{a b \\ a \neq b}} p(a b \mid 11) \underset{N \overline{C H V}}{\leq} 3
$$

Equip the graph with weights: $w(a b \mid x y)=\delta_{a \oplus b=x y}$

Bell scenarios: CHSH

Eight-vertex circulant $(1,4)$ graph: $\mathrm{Ci}_{8}(1,4)$

$$
\alpha(G, w)=3, \vartheta(G, w)=2+\sqrt{2}
$$

CSW: limitations

For Bell scenarios, $\vartheta(G, w)$ is only an upper bound to Tsirelson's bound.

CSW: limitations

For Bell scenarios, $\vartheta(G, w)$ is only an upper bound to Tsirelson's bound.

A true quantum model in a Bell scenario must satisfy the following constraints:
(i) Normalisation of probabilities: $\sum_{v \in e}\left|\left\langle\phi_{v} \mid \Psi\right\rangle\right|^{2}=1$, for every complete measurement e.
Example: $e=\{(a b \mid x y): a, b=0,1\}$
(ii) Normalisation of the von Neumann measurements: $\sum_{v \in e}\left|\phi_{v}\right\rangle\left\langle\phi_{v}\right|=\mathbb{1}$, for every complete measurement e.

CSW: limitations

For Bell scenarios, $\vartheta(G, w)$ is only an upper bound to Tsirelson's bound.

A true quantum model in a Bell scenario must satisfy the following constraints:
(i) Normalisation of probabilities: $\sum_{v \in e}\left|\left\langle\phi_{v} \mid \Psi\right\rangle\right|^{2}=1$, for every complete measurement e.
Example: $e=\{(a b \mid x y): a, b=0,1\}$
(ii) Normalisation of the von Neumann measurements: $\sum_{v \in e}\left|\phi_{v}\right\rangle\left\langle\phi_{v}\right|=\mathbb{1}$, for every complete measurement e.

Example: I_{3322} Bell inequality.

- $\vartheta(G, w) \sim 0.4114$
- $\vartheta(G, w)$ constrained via (i): bound $=0.25147$
- quantum bound< 0.2508755

Summary of today

- Kochen-Specker contextuality
S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
- KCBS example
A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S. Shumovsky, Phys. Rev. Lett. 101, 020403 (2008).
- State-independent contextuality
N.D.Mermin, Phys.Rev.Lett. 65, 3373-6 (1990). A.Peres, Phys. Lett. A 151, 107-8 (1990).
- Inequalities from hypergarphs: CSW approach
- KCBS
- CHSH Bell scenario
- Limitations: I_{3322}
A. Cabello, S. Severini, A. Winter, arXiv:1010.2163

