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An ontological model of an operational theory is noncontextual
if
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Example from quantum theory
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Operational equivalence
classes of measurements

M ~ M/
VP : p(X|P, M) = p(X|P, M)
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Example from quantum theory



ij {|¢1><7b1|,1 — [P0 @ly {lv) @1l I — [¥1)(¥al}
Py 1 1) (1] I — |ap1) (2]
.= Vo) (ol + [3) (3l = |ypb) (] 4 [0k (]

Example from quantum theory




Measurement
noncontextual model




P;

‘3 e M) T
£(2|A\, M) 7 '\
)
‘ Pg / J A

EAAM) [
ERIAMY) |

v
>

v

»
>

A
> A

Measurement contextual model



Preparation
noncontextuality

> p(AP) = p(A[P)

P~P
VM p(X|P, M) = p(X|P’, M)

Measurement
M ~ M’ noncontextuality

The best explanation of context-independence at the operational level
Is context-independence at the ontological level
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By what grounds do we justify
representing two measurement
devices by the same set of
projectors?



Answer:
Operational equivalence!
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Compatibility of measurements in
terms of joint simulatability
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Sources that are operationally
equivalent after marginalization
over outcome
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Robust noncontextuality inequality
from state-independent proof
of KS theorem

Kunjwal and RWS, PRL 115, 110403 (2015)



State-independent proof of no-go



18 ray proof in 4d
Cabello, Estebaranz, Garcia-Alcaine, Phys. Lett. A 212, 183 (1996)
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State independent no-go
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—>  Contradiction

In face of contradiction, we could give up outcome determinism
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Operational grounds for assuming
outcome determinism
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1. Preparation noncontextuality
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Outcome determinism

Note: precisely parallel to Bell's argument for outcome
determinism from perfect correlations and local causality
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Justifying outcome determinism
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State independent no-go
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Contradiction w/ universal noncontextuality



Note: the no-go isn’t state independent anymore



Translating this
state-independent no-go result
into
a noncontextuality inequality
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Robust noncontextuality inequality
from state-dependent proof
of KS theorem

Kunjwal and RWS, forthcoming



State-dependent proof of no-go



Klyachko, Can, Biniciolu, Shumovsky, PRL 101, 020403 (2008)
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State dependent no-go
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Si - S-/ - S*

Probability 1/3

Noise-robust!

Quantum
violation



Conclusions

We have a general technique for inferring NC inequalities from
state-independent and state-dependent proofs of KS theorem.

These are applicable to unsharp (i.e., noisy) measurements
and mixed states and can be tested on experimental data

Contending with noise is critical if one hopes to use
contextuality as a resource for information processing

One can leverage graph-theoretic results to derive inequalities
for arbitrary proofs (forthcoming by Kunjwal)

It is possible to extend these techniques to derive all NC
inequalities (see Krishna, RWS, Wolfe, arXiv:1704.01153)
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