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An ontological model of an operational theory is noncontextual 
if 
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two experimental 
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RWS, Phys. Rev. A 71, 052108 (2005) 
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The best explanation of context-independence at the operational level 
is context-independence at the ontological level 
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Robust noncontextuality inequality 
from state-independent proof  

of KS theorem 
Kunjwal and RWS, PRL 115, 110403 (2015)  
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1. Preparation noncontextuality 
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Outcome determinism 

3. Perfect Correlation between outcomes of Si and Mi for all i 

Note: precisely parallel to Bell’s argument for outcome 
determinism from perfect correlations and local causality 
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Contradiction w/ universal noncontextuality 



Note: the no-go isn’t state independent anymore 
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Robust noncontextuality inequality 
from state-dependent proof  
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Kunjwal and RWS, forthcoming 
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Measurements 

Special preparation 

5

quantifies the average degree of correlation for the pair-
ings {(Si,Mi)} predicted by ontic state ⁄, averaged over
the ontic states in the support of µ(·|s,Sú).

The argument proceeds by showing that the quantity
Csú has a nontrivial upper bound. Let R denote the prob-
ability that one realizes the relevant (proof dependent)
features of the correlations among compatible subsets of
M when implemented on [sú|Sú] (mentioned in the no-go
result), and let R(⁄) denote the probability one realizes
the relevant features for an ontic state ⁄, so that

R =
ÿ

⁄

R(⁄)µ(⁄|sú,Sú) (28)

Recalling that R
KS

denotes the maximum value that
can be achieved by an ontic state that makes outcome-
deterministic noncontextual assignments to the measure-
ments, if R > R

KS

, then some of the ontic states in
the support of µ(·|sú,Sú) must be intrinsically outcome-
indeterministic. That is, they cannot be understood as
mixtures of ontic states with outcome-deterministic re-
sponse functions. In this case, Csú must be bounded away
from 1, and the upper bound is a function of R,

Csú Æ f(R) < 1. (29)

By contrast, given that the no-go result does not make
any appeal to the statistics of measurements on prepara-
tion e�ects [s|Sú] for s ”= sú, the ontic states in the sup-
port of µ(·|s,Sú) can deterministically assign outcomes
to the measurements, which in turn implies that Cs can
achieve its logical maximum,

’s ”= sú : Cs Æ 1. (30)

In all, therefore, we have

Corr Æ púf(R) + (1 ≠ pú). (31)

This is the form of a noncontextuality inequality derived
from a state-dependent proof of the KS theorem. It spec-
ifies a tradeo� relation between Corr, R, and pú,

For the n-cycle scenario, where R is given by Eq. (20),
one finds f(R) = 1 ≠ n

2

!
R ≠ n≠1

n

"
. The proof proceeds

as follows. Without any loss of generality, we identify the
ontic states with vertices of the polytope of possible cor-
relations among compatible subsets of M measured on
the preparation obtained by conditioning on obtaining
the source e�ect [sú|Sú]. See Appendix ?? for a descrip-
tion of this polytope. Although there are no ontic states
that ensure Corr(⁄) = 1 and R(⁄) = 1, there are on-
tic states that make Corr(⁄) = 1 and R(⁄) = n≠1

n , the
set of which we will denote by �

d

, and there is an ontic
state that makes Corr(⁄) = 1

2

and R(⁄) = 1, the (single-
ton) set of which we will denote by �

i

. All other ontic
states imply smaller values for one or both of Corr(⁄)
and R(⁄). Therefore, in order to determine the maxi-
mum value of Csú for a given value of R (i.e., the best
trade-o� relation), namely f(R), we assume that all of
the ontic states in the support of µ(⁄|sú,Sú) are in �

d

  

FIG. 1. The KCBS construction [5].

or in �
i

, so that if we define µ
d/i

©
q

⁄œ�d/i
µ(⁄|sú,Sú),

then µ
d

+ µ
i

= 1, f(R) = µ
d

+ 1

2

µ
i

, and R = n≠1

n µ
d

+ µ
i

.
Eliminating µ

d

and µ
i

from these equations, we obtain
f(R) = 1 ≠ n

2

!
R ≠ n≠1

n

"
, which (recalling Eq. (29)) con-

cludes the proof.
Substituting this expression into Eq. (31), we obtain

the noncontextuality inequality

Corr Æ 1 ≠ pú
n

2

3
R ≠ n ≠ 1

n

4
. (32)

Quantum example.—The first state-dependent proof
of the failure of KS-noncontextuality in quantum the-
ory using the n-cycle construction is in Ref. [5] for
n = 5. It showed that the compatibility relations
among the {Mi}5

i=1

exist for sharp quantum measure-
ments on a qutrit if Mi corresponds to the projector-
valued measure {|liÍÈli|, 1 ≠ |liÍÈli|}, where |liÍ =
(sin ◊ cos „i, sin ◊ sin „i, cos ◊), „i = 4fii

5

, and cos ◊ = 1

4Ô
5

.
These are depicted as 3-dimensional vectors in Fig. 1.
The special preparation e�ect [sú|Sú] corresponds to the
quantum state |ÂÍ = (0, 0, 1), also depicted in Fig. 1.

Because the Hilbert space is 3-dimensional, there ex-
ists a convex decomposition of the maximally mixed
state where Â appears with probability 1/3, e.g., 1

3

1 =
1

3

|ÂÍÈÂ| + 2

3

1≠|ÂÍÈÂ|
2

, so that pú = 1

3

> 0. The average
anticorrelation for |ÂÍ is found to be R = 2Ô

5

¥ 0.89442,
contradicting the prediction of KS-noncontextuality that
R Æ 4

5

.
All of this generalizes to arbitrary odd n Ø 5 [11]:

the |liÍ have the same form with i œ {1, 2, . . . , n}, „i =
n≠1

n fii, and cos2 ◊ = cos(fi/n)/(1 + cos(fi/n)), with |ÂÍ
as before, so that pú = 1

3

> 0. and R = 2 cos(

fi
n )

1+cos(

fi
n )

> n≠1

n .
This particular state-dependent no-go theorem for KS

noncontextuality is promoted into a no-go theorem for
universal noncontextuality in the manner we have de-
scribed, namely, by noting that outcome determinism can
be justified as in Eq. (11). Let Si be the quantum source

Klyachko, Can, Biniciolu, Shumovsky, PRL 101, 020403 (2008) 
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Conclusions 
We have a general technique for inferring NC inequalities from 
state-independent and state-dependent proofs of KS theorem. 
 
These are applicable to unsharp (i.e., noisy) measurements 
and mixed states and can be tested on experimental data 
 
Contending with noise is critical if one hopes to use 
contextuality as a resource for information processing 
 

------------- 
One can leverage graph-theoretic results to derive inequalities 
for arbitrary proofs (forthcoming by Kunjwal) 
 
It is possible to extend these techniques to derive all NC 
inequalities (see Krishna, RWS, Wolfe, arXiv:1704.01153) 
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