
Quantum theory cannot consistently describe the use of itself

Daniela Frauchiger and Renato Renner∗

Institute for Theoretical Physics, ETH Zurich, Switzerland

Quantum mechanics may be used to describe systems that contain agents who themselves use
quantum mechanics. We propose a gedankenexperiment to test the consistency of such a recursive
use of the theory. We find that one agent, upon observing a particular measurement outcome,
concludes that another agent has predicted the opposite outcome with certainty. The agents’ con-
clusions, although all derived within quantum mechanics, are thus inconsistent. The experiment
also provides a way to compare current interpretations of quantum mechanics, which differ in where
they locate the origin of this inconsistency.

I. INTRODUCTION

Quantum mechanics is one of our best tested physical theories. Yet, despite amazing progress in
experiments, we do not know whether or not its laws are applicable to complex macroscopic objects,
like Schrödinger’s cat [1]. Here we take a theorist’s approach to explore this question. The idea,
illustrated by Fig. 1, is to ask whether quantum mechanics can consistently describe systems that
are complex enough to include agents who themselves use the theory to make predictions.

With a gedankenexperiment, we show that such a self-referential use of quantum theory sometimes
yields contradictory claims. The experiment is information-theoretic in nature and can be described
and analysed using standard quantum formalism (cf. the circuit diagram in the appendix). However,
as emphasised by the term “gedankenexperiment,” we do not claim that it is technologically feasible,
at least not in the form presented here. Rather than probing nature, its purpose is to scrutinise the
consistency of our description of nature in terms of quantum theory. (One may compare this to, say,
the gedankenexperiment of letting an observer cross the event horizon of a black hole. Although
we do not have the technology to carry out this experiment, reasoning about it provides us with
insights on relativity theory.)

Our starting point is an argument due to Wigner about a very standard experiment: An agent,
F, measures a system, S. Instead of taking F’s perspective, however, Wigner analysed the situation
from an outside viewpoint, from where one has no access to the outcome observed by F. His
conclusion was that, due to the linearity of the quantum mechanical equations of motion, the joint
system consisting of everything affected by F’s measurement must evolve towards a superposition
state, which has components for each possible measurement outcome. This is known as the Wigner’s
Friend paradox [2].

To make this more precise and concrete, we take S to be the spin of an electron and suppose
that agent F non-destructively measures its vertical direction z, as shown in Fig. 2. Hence, upon
observing the outcome, z = − 1

2 or z = + 1
2 , agent F must conclude that S is in state

ψS = |↓〉S or ψS = |↑〉S , (1)

respectively.
Consider now an outside agent, W, who has no direct access to the outcome z observed by his

friend F. He may view F’s lab as a big quantum system, L ≡ S⊗D⊗F , with a part F that includes his
friend and another part D that contains her measurement devices and everything else connected to
them. We suppose that, from W’s perspective, the lab is at the beginning of the experiment in a pure
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Figure 1. Consistent reasoning. We say that a theory T enables consistent reasoning (C) if one agent, A, can
draw conclusions by reasoning within T about the conclusions drawn by another agent, A′, who also uses T .
A classical example of such recursive reasoning is the muddy children puzzle (here T is just standard logic;
see [7] for a detailed account). The idea of using a physical theory T to describe agents who themselves
use T has also appeared in thermodynamics, notably in discussions around Maxwell’s demon [8].

state, or at least a good approximation of such a state. (One may be concerned here that assigning
pure states to complex systems is unrealistic, for it requires extremely accurate information about
them [3, 4]. Crucially, however, the laws of quantum mechanics do not preclude this [5].) We also
assume that the lab L is isolated during the time when F carries out her measurement. Translating
this assumption to quantum mechanics, it means that the dependence of the final state of L on the
initial state of S is given by a linear map of the form

US→L =

{
|↓〉S 7→ |− 1

2 〉L = |↓〉S ⊗ |“z=− 1
2

”〉
D
⊗ |“ψS= |↓〉”〉F

|↑〉S 7→ |+ 1
2 〉L = |↑〉S ⊗ |“z=+ 1

2
”〉
D
⊗ |“ψS= |↑〉”〉F .

(2)

Here |“z=− 1
2

”〉
D

and |“z=+ 1
2

”〉
D

denote the states of the lab’s devices depending on the measurement
outcome z. Analogously, |“ψS= |↓〉”〉F and |“ψS= |↑〉”〉F denote the states of F, with the labels indicating
the friend’s conclusions about the state of S as in (1). Hence, by linearity, if the initial spin state
was, say, |→〉S =

√
1/2(|↓〉S + |↑〉S), then the final state that W assigns to L is

ΨL =
√

1/2
(
|− 1

2 〉L + |+ 1
2 〉L
)
, (3)

i.e., a superposition of the two states defined in (2).

Although the state assignment (3) may appear to be “absurd” [2], it does not logically contra-
dict (1). Indeed, the marginal on S is just a fully mixed state. While this is different from (1), the
difference can be explained by the agents’ distinct level of knowledge: F has observed z and hence
knows the spin direction, whereas W is ignorant about it [6]. Agent F’s state assignment, (1), and
agent W’s assignment, (3), are hence not contradictory.

To nevertheless arrive at the claimed contradiction, we need to extend the setup considered by
Wigner. The basic idea is to make some of the information about the value z held by agent F, who
is enclosed in lab L, available to the outside, but without lifting the isolation of L. Roughly, this is
achieved by letting the initial state of S depend on a random value, r, which is known to another
agent outside of L.

The analysis of this extended gedankenexperiment ultimately yields a no-go theorem (Theorem 1).
It states that three natural-sounding assumptions about the agents’ reasoning, (Q), (C), and (S), can-
not all be valid. Assumption (Q) captures the universal correctness of quantum theory (specifically,
it proclaims that an agent can be certain that a given proposition holds whenever the quantum-
mechanical Born rule assigns probability 1 to it), (C) demands consistency in the sense illustrated
by Fig. 1, and (S) ensures that, from the viewpoint of an agent who carries out a measurement,
the measurement has one single outcome (e.g., if the agent observes z = + 1

2 then she can be cer-
tain that she did not also observe z = − 1

2 ). While the no-go theorem itself does not tell us which
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Figure 2. Wigner and Deutsch’s arguments. Agent F measures the vertical spin component S of an electron,
obtaining outcome z. Assuming that the measurement is non-destructive, S is now, from F’s perspective,
in a pure state ψS ; cf. (1). Agent W, who is outside of F’s lab, may instead regard that lab, including the
agent F, as a big quantum system L (orange box). Having no access to z, he would assign a state ΨL of the
form (3) to L, as noted by Wigner [2]. Deutsch argued that W could in principle test this state assignment
by applying a carefully designed measurement to L [9].

of these assumptions is wrong, any specific interpretation of quantum theory, when applied to the
gedankenexperiment, will necessarily conflict with at least one of them. This gives a new way to
test and categorise interpretations of quantum theory (cf. Table III).

II. RESULTS

A. Description of the gedankenexperiment

We consider four different agents, who follow the protocol described below, with the specifications
given in Table I. Two agents, the “friends” F and F̄, are located in separate labs, denoted by L
and L̄, respectively. Two further agents, W and W̄, are at the outside, from where they can apply
measurements to L and L̄, as shown in Fig. 3. We assume that the two labs are, from the viewpoint
of W and W̄, initially in a pure state, and that they remain isolated during the experiment unless
the protocol explicitly prescribes a communication step or a measurement applied to them.

Experimental Protocol

The steps are repeated in rounds n = 0, 1, 2, . . . until the halting condition (in the last step) is satisfied.

At n:00 Agent F̄ invokes a randomness generator (based on the measurement of a quantum system, R,
in state |init〉R as defined in Table I) that outputs r = heads or r = tails with probabilities 1/3
and 2/3, respectively. She sets the spin of an electron, S, to |↓〉S if r = heads and to |→〉S =√

1/2(|↓〉S + |↑〉S) if r = tails, and sends S to F.

At n:10 Agent F measures S w.r.t. the basis {|↓〉S , |↑〉S}, recording the outcome z ∈ {− 1
2
,+ 1

2
}.

At n:20 Agent W̄ measures L̄ w.r.t. a basis containing the vector |ok〉L̄ (defined in Table I). If the outcome
associated to this vector occurs he announces w̄ = ok and else w̄ = fail.

At n:30 Agent W measures L w.r.t. a basis containing the vector |ok〉L (defined in Table I). If the outcome
associated to this vector occurs he announces w = ok and else w = fail.

At n:40 If w̄ = ok and w = ok then the experiment is halted.

The numbers on the left indicate the timing of the steps. For example, in round n = 0, agent F
must start her measurement of S at time 0:10 and complete it before 0:20.

Before proceeding to the analysis of the thought experiment, a few comments about its relation to
earlier proposals are in order. In the case where r = tails, and leaving out the measurements by W̄
and W, the situation is identical to the one considered by Wigner, as described in the introduction.
Furthermore, with W’s measurement reinserted, it corresponds to a variant due to Deutsch [9], as
depicted in Fig. 2. The particular choice of states and measurements used in the gedankenexperiment
is derived from a construction by Hardy [10, 11]. The experiment is also similar to Brukner’s
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Figure 3. Illustration of the gedankenexperiment. In each round n = 0, 1, 2, . . ., agent F̄ polarises an electron
in a direction determined by a random value r. Agent F measures its vertical polarisation z. Agents W̄
and W measure the entire labs of F̄ and F to obtain outcomes w̄ and w, respectively. For the analysis of
the experiment, we assume that all agents are aware of the entire experimental setup but observe different
parts. Agent F̄, for instance, observes r but has no direct access to w. She may however use quantum theory
to draw conclusions about w.

proposal [12] of using Wigner’s argument to obtain a strengthening of Bell’s theorem [13] (cf. the
discussion section).

B. Analysis of the gedankenexperiment

We analyse the experiment from the individual agents’ viewpoints. For this we suppose that all
agents employ the same theory, T . One may think of T as a set of rules that the agents use to derive
novel statements from given ones and from their observations. The assumption that the agents “use
quantum mechanics” can thus be phrased in terms of a requirement on T .

For our purposes, it suffices to include in T a basic variant of the quantum-mechanical Born rule,
which only talks about the case of predictions that have probability 1. Crucially, however, we take
this rule to be universally valid. In particular, it shall be applicable to systems S that themselves
contain other agents.

Assumption (Q)

A theory T that satisfies Assumption (Q) allows any agent A to reason as follows. Suppose that A
has established the statements

sAI = “S is in state |ψ〉 at time t0.”

sAM = “x is obtained by a measurement of S w.r.t. the family {πH
x } of Heisenberg operators relative

to time t0. The measurement is completed at time t.”

where S is an arbitrary system around A, |ψ〉 a unit vector of its Hilbert space, and {πHx }x∈X a
family of positive operators on this space such that

∑
x π

H
x = 1. If 〈ψ|πHξ |ψ〉 = 1 for some ξ ∈ X

then A can conclude

sAQ = “I am certain that x = ξ at time t.”
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measuring
agent value

measured
system

relevant vectors of
measurement basis

F̄ r R |heads〉R |tails〉R

F z S |↓〉S |↑〉S

W̄ w̄ L̄ |ok〉L̄ =
√

1/2
(
|h̄〉L̄ − |̄t〉L̄

)
W w L |ok〉L =

√
1/2
(
|− 1

2
〉
L
−|+ 1

2
〉
L

)
(a) Measurements

time interval time evolution
within round n in F̄’s lab in F’s lab

before n:00
set R to
|init〉R =

√
1/3|heads〉R +

√
2/3|tails〉R

[irrelevant]

from n:00
to n:10

U00→10
R→L̄S

=

{
|heads〉R 7→ |h̄〉L̄ ⊗ |↓〉S
|tails〉R 7→ |̄t〉L̄ ⊗ |→〉S

[irrelevant]

from n:10
to n:20

U10→20
L̄→L̄

= 1L̄ U10→20
S→L =

{
|↓〉S 7→ |−

1
2
〉
L

|↑〉S 7→ |+
1
2
〉
L

from n:20
to n:30

[irrelevant] U20→30
L→L = 1L

(b) Time evolution

Table I. Details of the experimental protocol. The values observed by the individual agents together with their
measurement bases are listed in (a). The basis vectors |ok〉L̄ and |ok〉L are expressed in terms of particular
states, such as |− 1

2
〉
L

and |+ 1
2
〉
L

, which are defined in (b). For them to be well defined, the assumption
that L̄ and L are isolated quantum systems is crucial. Technically, it means that their time evolution is
described by norm-preserving linear maps, i.e., isometries. The second protocol step, for instance, induces
an isometry U10→20

S→L from S to L. The vectors |− 1
2
〉
L

and |+ 1
2
〉
L

are then defined by this isometry as the
states of the lab L at the end of the protocol step, depending on whether the incoming spin was |↓〉S or |↑〉S ,
respectively. One may therefore, for concreteness, think of them as states like those in (2) — although it is
actually unnecessary to assume anything about their structure.

We will start off with statements sAI and sAM that directly describe the experimental protocol. Since
the measurements are specified in terms of vectors (defined in Table I), the Heisenberg operators
will be of the form πHx = U†|φx〉〈φx|U , where |φx〉 is the vector belonging to outcome x, and U the
isometry corresponding to the time evolution between time t0 and the time when the measurement
is carried out.

Specifically, agent F̄ may start her reasoning with the two statements

sF̄I = “If r = tails at time n:10 then spin S is in state |→〉S at time n:10.”

sF̄M = “The value w is obtained by a measurement of L w.r.t. {πH
ok , π

H
fail}. The measurement is

completed at time n:40.”

where

πHw=ok = (U10→30
S→L )†|ok〉〈ok|L(U10→30

S→L ) and πHw=fail = 1− πHw=ok

are the Heisenberg operators with respect to time t0 = n:10, and U10→30
S→L = U20→30

L→L U10→20
S→L . Using
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now that U10→30
S→L |→〉S =

√
1/2
(
|− 1

2 〉L+|+ 1
2 〉L
)

is orthogonal to |ok〉L, we find

〈→|πHw=fail|→〉 = 1− 〈→|πHw=ok|→〉 = 1 .

Hence, if the theory T that agent F̄ uses for her reasoning satisfies (Q) then she can infer from sF̄I
and sF̄M that statement sF̄Q of Table II holds.

Similarly, agent F’s reasoning may be based on the two statements

sFI = “If r = heads at time n:10 then the spin S is in state |↓〉S at time n:10.”

sFM = “The value z is obtained by a measurement of S w.r.t. {πH
− 1

2
, πH

+ 1
2
}, which is completed at

time n:20.”

where

πHz=− 1
2

= |↓〉〈↓|S and πHz=+ 1
2

= |↑〉〈↑|S

are the Heisenberg operators with respect to time t0 = n:10. Because

〈↓|πz=− 1
2
|↓〉 = 1

she can conclude that if r = heads then z = − 1
2 . This is logically equivalent to statement sFQ of

Table II.
We proceed with agent W̄, for whom the statement

sW̄I = “System R is in state |init〉R at time n:00.”

holds. Here we consider Heisenberg operators with respect to time t0 = n:00. We are only interested
in the event that w̄ = ok and z = − 1

2 , as well as its complement, i.e.,

πH(w̄,z)=(ok,− 1
2 ) = (U00→10

R→L̄S)†(|ok〉〈ok| ⊗ |↓〉〈↓|)(U00→10
R→L̄S) and πH(w̄,z)6=(ok,− 1

2 ) = 1− πH(w̄,z)=(ok,− 1
2 ) ,

where we have already used that U10→20
L̄→L̄ is the identity. It is straightforward to verify that

U00→10
R→L̄S |init〉R =

√
1/3|h̄〉L̄ ⊗ |↓〉S+

√
2/3|̄t〉L̄ ⊗ |→〉S is orthogonal to |ok〉L̄ ⊗ |↓〉S , which implies that

〈init|πH(w̄,z)6=(ok,− 1
2 )|init〉 = 1− 〈init|πH(w̄,z)=(ok,− 1

2 )|init〉 = 1 .

Agent W̄, who also uses (Q), can hence be certain that (w̄, z) 6= (ok,− 1
2 ), which implies statement sW̄Q

of Table II.
Finally, agent W can make the same statement sW̄I as agent W̄. An analogous calculation as above

shows that

〈init|πH(w̄,w)=(ok,ok)|init〉 = 1/12 (4)

where

πH(w̄,w)=(ok,ok) = (U00→10
R→L̄S)†(1L̄ ⊗ U10→30

S→L )†(|ok〉〈ok| ⊗ |ok〉〈ok|)(1L̄ ⊗ U10→30
S→L )(U00→10

R→L̄S)

is the Heisenberg operator belonging to the event that w̄ = ok and w = ok. Hence, according to
quantum mechanics, agent W can be certain that the outcome (w̄, w) = (ok, ok) occurs after finitely
many rounds. This is statement sWQ of Table II. (That the statement can indeed be derived using (Q)

is shown in the appendix.)
To obtain further statements, the agents may use their theory T to reason about how they would

reason from the viewpoint of another agent. To enable such nested reasoning we need to introduce
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agent observes statement inferred via (Q)

F̄ r sF̄Q = “If r = tails at n:10 then I am certain that W will observe
w = fail at n:40.”

F z sFQ = “If z = + 1
2

at n:20 then I am certain that F̄ observed
r = tails at n:10.”

W̄ w̄ sW̄Q = “If w̄ = ok at n:30 then I am certain that F observed
z = + 1

2
at n:20.”

W w sWQ =
“I am certain that there exists a round n ∈ N≥0 in which it

is announced that w̄ = ok at n:30 and w = ok at n:40.”

Table II. The agents’ observations and conclusions. The statements that the individual agents can derive
from quantum theory depend on the information accessible to them (cf. Fig. 3). Agent F̄, for instance,
observes r, and uses this information to infer the value w, which will later be observed by W.

another assumption.

Assumption (C)

A theory T that satisfies Assumption (C) allows any agent A to reason as follows. If A has
established

sA1 = “I am certain at time t0 that agent A′, upon reasoning using T , is certain that x = ξ at
time t.”

for some x, ξ, and t > t0, then A can conclude

sA2 = “I am certain at time t0 that x = ξ at time t.”

Agent F may insert F̄’s statement sF̄Q into sFQ, obtaining

sF1 = “If z = + 1
2

at time n:20 then I am certain that F̄ is certain that W will observe w = fail at
time n:40.”

If the theory T satisfies (C) then F can conclude from this that

sF2 = “If z = + 1
2

at time n:20 then I am certain that W will observe w = fail at time n:40.”

Similarly, W̄ may combine this statement with his statement sW̄Q to obtain

sW̄1 = “If w̄ = ok at time n:30 then I am certain that F is certain that W will observe w = fail at
time n:40.”

W̄ could now, by virtue of (C), conclude that

sW̄2 = “If w̄ = ok at time n:30 then I am certain that W will observe w = fail at time n:40.”

Agent W, who hears the announcement of w̄ by W̄, may turn the above into the following statement.

sW1 = “If w̄ = ok at time n:30 then I am certain that W̄ is certain that I will observe w = fail at
time n:40.”
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(Q) (S) (C)

Copenhagen X X ×
HV theory applied to subsystems X X ×
HV theory applied to entire universe × X X
Many-worlds ? × ?
Collapse theories × X X
Consistent histories X X ×
QBism X X ×
Relational quantum mechanics X X ×
CSM approach × X X
ETH approach × X X

Table III. Interpretations of quantum theory. Theorem 1 can be applied to different interpretations of
quantum theory. Each of them must violate at least one of the assumptions (indicated by ×).

Using (C), W can now as well conclude

sW2 = “If w̄ = ok at time n:30 then I am certain that I will observe w = fail at time n:40.”

To finalise our analysis, we need one more assumption, which captures the intuition that mea-
surements have single outcomes for any agent.

Assumption (S)

A theory T satisfies Assumption (S) if it disallows any agent A, for whom the statement

sA = “I am certain at time t0 that x = ξ at time t.”

for some x, ξ, and t > t0 is correct, to also make the statement

s̄A = “I am certain at time t0 that x 6= ξ at time t.”

Under this assumption, sW2 and sWQ cannot both be valid, i.e., we have arrived at a contradiction.

C. No-go theorem

The conclusion of the above analysis may be formulated as a no-go theorem.

Theorem 1. The gedankenexperiment of Section II A cannot be consistently described by any
theory T that satisfies Assumptions (Q), (C), and (S).

To illustrate the theorem, we consider in the following different interpretations and modifications
of quantum mechanics. Each of them can be regarded as a theory T , and hence must violate
either (Q), (C), or (S). This yields a natural categorisation as shown in Table III. In principle, an
interpretation may also evade the conclusions of the theorem by not fitting into the framework used
here — a possibility which we examine at the end of this section.

Theories that violate (Q). Assumption (Q) corresponds to the quantum-mechanical Born rule.
Since the assumption is concerned with the special case of probability-1 predictions only, it is largely
independent of how one interprets probabilities. However, the non-trivial aspect of (Q) is that it
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regards the Born rule as a universal law. That is, it demands that an agent A can apply the rule to
arbitrary systems S around her, including large ones that may contain other agents. The specifier
“around” is crucial, though: (Q) does not demand that the agent A describes herself as a quantum
system. Such a requirement would indeed be overly restrictive (see [14]) for it would immediately rule
out interpretations in the spirit of Copenhagen, according to which the observed quantum system
and the observer must be distinct from each other [15, 16].

Assumption (Q) is manifestly violated by theories that postulate a modification of the quantum
formalism, such as spontaneous [17–22] and gravity-induced [23–25] collapse models (cf. [26] for a
review). These deviate from standard quantum theory already on microscopic scales, although the
effects of the deviation typically only become noticeable in larger systems.

In some approaches to quantum mechanics, it is simply postulated that large systems are “classi-
cal”, but the physical mechanism that explains the absence of quantum features remains unspeci-
fied [27]. In the view described in [3], for instance, the postulate says that measurement devices are
infinite-dimensional systems whereas observables are finite. This ensures that coherent and incoher-
ent superpositions in the state of a measurement device are indistinguishable. Similarly, according
to the ETH approach [28], the algebra of available observables is time-dependent and does not allow
one to distinguish coherent from incoherent superpositions once a measurement has been completed.
General measurements on systems that count themselves as measurement devices are thus ruled
out. Another example is the CSM ontology [29], according to which measurements must always be
carried out in a context, which includes the measurement devices. It is then postulated that this
context cannot itself be treated as a quantum system. Within all these interpretations, the Born
rule still holds “for all practical purposes”, but is no longer a universally applicable law in the sense
of Assumption (Q) (see the discussion in [5]).

Another class of theories that violate (Q), although in a less obvious manner, are particular hidden-
variable (HV) interpretations [30], with Bohmian mechanics as the most prominent example [31–33].
According to the common understanding, Bohmian mechanics is a “theory of the universe” rather
than a theory about subsystems [34]. This means that agents who apply the theory must in principle
always take an outside perspective on the entire universe, describing themselves as part of it. This
outside perspective is identical for all agents, which ensures consistency and hence the validity of
Assumption (C). However because (S) is satisfied, too, it follows from Theorem 1 that (Q) must be
violated (see the appendix for more details).

Theories that violate (C). If a theory satisfies (Q) and (S) then, by Theorem 1, it must violate (C).
This conclusion applies to a wide range of common readings of quantum mechanics, including most
variants of the Copenhagen interpretation. One concrete example is the consistent histories (CH)
framework [35–38], which is also similar to the decoherent histories approach [39, 40]. Another
class of examples are subjectivistic interpretations, which regard statements about outcomes of
measurements as personal to an agent, such as relational quantum mechanics [41], QBism [42, 43],
or the approach proposed in [12] (see the appendix for a discussion of the CH framework as well as
QBism).

The same conclusion applies to hidden-variable (HV) interpretations of quantum mechanics, pro-
vided that we use them to describe systems around us rather than the universe as a whole (contrast-
ing the paradigm of Bohmian mechanics discussed above). In this case, both (Q) and (S) hold by
construction. This adds another item to the long list of no-go results for HV interpretations: they
cannot be local [13], they must be contextual [44, 45], and they violate freedom of choice [46, 47].
Theorem 1 entails that they also violate (C). In particular, there cannot exist an assignment of
values to the hidden variables that is consistent with the agents’ conclusions.

Theories that violate (S). Although intuitive, (S) is not implied by the bare mathematical for-
malism of quantum mechanics. Among the theories that abandon the assumption are the relative
state formulation and the many-worlds interpretation [9, 48–52]. According to the latter, any quan-
tum measurement results in a branching into different “worlds”, in each of which one of the possible
measurement outcomes occurs. Further developments and variations include the many-minds inter-
pretation [53, 54] and the parallel lives theory [55]. A related concept is quantum Darwinism [56],
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whose purpose is to explain the perception of classical measurement outcomes in a unitarily evolving
universe.

While many-worlds interpretations manifestly violate (S), their compatibility with (Q) and (C)
depends on how one defines the branching. If one regards it as an objective process, (Q) may be
violated (cf. the example in Sec. 10 of [57]). It is also questionable whether (Q) can be upheld if
branches do not persist over time (cf. the no-histories view described in [58]).

Implicit assumptions. The formalism we used to analyse the gedankenexperiment is rather mini-
malistic. In particular, neither of the assumptions (Q), (C), or (S) refers to the notion of probabilities
— although (Q) is of course motivated by the idea that a statement can be regarded as “certain” if it
has probability 1 according to the standard formalism. Theorem 1 is therefore largely independent
of how probabilities are interpreted.

Since the formalism does not rely on a statistical model, it also avoids the assumption that mea-
surement outcomes obtained by different agents simultaneously have definite values. (For example,
considering the original Wigner’s friend experiment, (C) and (S) do not enforce that W assigns a
definite value to F’s outcome z.) Such simultaneous definiteness assumptions are otherwise rather
common. They not only enter the proof of Bell’s theorem [13] but also various modern arguments
that employ probabilistic frameworks [59–67], where measurement outcomes are modelled as random
variables belonging to a single random experiment.

Nevertheless, in our considerations above, we used concepts such as that of an “agent” or of
“time”. It is conceivable that the conclusions of Theorem 1 can be avoided by theories that provide
a non-standard understanding of these concepts. We are however not aware of any concrete examples
of such theories.

III. DISCUSSION

Current interpretations of quantum theory do not agree on the origin of the contradiction that
arises in our analysis of the gedankenexperiment (cf. Table III). To compare the different views, it
may therefore be useful to rephrase the experiment as a concrete game-theoretic decision problem.

Suppose that a casino offers the following gambling game. One round of the experiment is played,
with the gambler in the role of W, and the roles of F̄, F, and W̄ taken by employees of the casino.
The casino promises to pay $ 1.000 to the gambler if F̄’s random value was r = heads. Conversely,
if r = tails, the gambler must pay $ 500 to the casino. It could now happen that, at the end of the
game, w = ok and w̄ = ok, and that a judge can convince herself of this outcome. The gambler and
the casino are then likely to end up in a dispute, putting forward arguments taken from Table II.

Gambler: “The outcome w = ok implies, due to sF̄Q, that r = heads, so the casino must pay me $ 1.000.”

Casino: “The outcome w̄ = ok proves, by virtue of sW̄Q , that our employee observed z = + 1
2
. This in turn

proves, by virtue of sFQ, that r = tails, so the gambler must pay us $ 500.”

How should the judge decide on this case? Could it even be that both assertions must be accepted
as two “alternative facts” about what the value r was? We leave it as a task for further research to
explore what the different interpretations of quantum mechanics have to say about this game.

Theorem 1 may be compared to earlier no-go results, such as [10–13, 44–46]. Most of them also use
assumptions similar to (Q) and (S), although the latter is often only implicit. These are then shown
to be in conflict with assumptions about reality, locality, and freedom of choice. (For example, in [12],
it is shown that no theory can fulfil all of the following properties: (i) be compatible with quantum
theory on all scales, (ii) simultaneously assign definite truth values to measurement outcomes of all
agents, (iii) allow agents to freely choose measurement settings, and (iv) be local.) Theorem 1 now
asserts that (Q) and (S) are already in conflict with the idea that agents can consistently reason
about each other, in the sense of (C).
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We also note that the argument presented here does not involve counterfactual reasoning. This
is in contrast to many no-go results in quantum mechanics, which involve reasoning about choices
that could have been made but have not actually been made. In fact, in the proposed experiment,
the agents never make any choices (also no delayed ones, as e.g., in Wheeler’s “delayed choice”
experiment [68]).

We conclude by suggesting a modified variant of the experiment, which may be technologically
feasible. The idea is to substitute agents F̄ and F by computers. While it is debatable whether
computers can reasonably count as agents, one may argue that they could certainly carry out the
tasks prescribed in the experimental protocol, and draw conclusions such as “I am certain that W
will observe w = fail at n:40.” To ensure that F̄ and F’s lab are isolated, one could use quantum
computers, which by construction do not leak information to their environment. Such an experiment
may serve as a test for the statements in Table II, provided that one is ready to make some mild
additional assumptions. For example, aborting the experiment at time n:20, just before W̄ starts her
measurement, one could read out the values r and z. Assuming that aborting the experiment does
not alter these values, and that the value r at time n:20 is still the same as at time n:10, this would
be a test for statement sFQ. In this sense, quantum computers, motivated usually by applications in
computing, may help us answering questions in fundamental research.
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APPENDIX

Information-theoretic description

The experimental protocol may be represented in terms of a circuit diagram, Fig. 4, where the
actions of the agents correspond to isometries acting on certain subsystems. The diagram emphasises
the information-theoretic aspects of the experiment. While all agents have full information about the
overall evolution (the circuit diagram itself), they carry out separate measurements, and therefore
have access to different data (corresponding to different wires in the diagram). In a measurement,
e.g., that of the electron spin S, the outcome z is recorded in a memory register, F , held by agent F.

Derivation of statement sWQ using Assumption (Q)

In Section II B we argued that the event (w̄, w) = (ok, ok) must occur after finitely many rounds n,
which is statement sWQ of Table II. While this is a pretty obvious consequence of the Born rule, we
now show that it also follows from Assumption (Q), which corresponds to the special case where the
Born rule gives probability-1 predictions.

We consider Heisenberg operators with respect to a time t0 right before the experiment starts.
For any round n, let Wn be the isometry from C to L̄⊗L that includes the initialisation of system R
in state |init〉R as well as U00→10

R→L̄S and U10→20
S→L (cf. Table I), i.e.,

Wn
C→L̄L = (1L̄ ⊗ U10→20

S→L )U00→10
R→L̄S |init〉R .

The Heisenberg operator of the event (w̄, w) = (ok, ok) in round n can thus be written as

πnok,ok = (Wn
C→L̄L)†(|ok〉〈ok| ⊗ |ok〉〈ok|)(Wn

C→L̄L) .

We may now specify a Heisenberg operator πHhalt for the halting condition, i.e., that the event
(w̄, w) = (ok, ok) occurs in some round n,

πHhalt =

∞∑
n=0

πn(ok,ok)

n−1∏
m=0

(
1− πm(ok,ok)

)
.

Note that these are operators on C, i.e., πn
ok,ok

= p1 for some p ∈ C. It follows directly from (4) that
p = 1/12 > 0. This yields

πHhalt = 1

∞∑
n=0

p(1− p)n = 1 .

One may then apply Assumption (Q) to conclude that statement sWQ of Table II holds.

Analysis within Bohmian mechanics

According to Bohmian mechanics, the state of a system of particles consists of their quantum-
mechanical wave function together with an additional set of variables that specify the particles’
spatial positions. While the wave function evolves according to the Schrödinger equation, the time
evolution of the additional position variables is governed by another equation of motion, sometimes
referred to as the guiding equation. The general understanding is that these equations of motion
must always be applied to the universe as a whole. As noted in [34], “if we postulate that subsys-
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D
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1
2
|
D
〈− 1

2
|
F

+|↑〉〈↑|S〈+
1
2
|
D
〈+ 1

2
|
F

L̄

Ē

L̄
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|ok〉〈ok|L̄〈ok|Ē〈ok|W̄
+|ok〉〈ok|⊥

L̄
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L

W

L

E

|ok〉〈ok|L〈ok|E〈ok|W
+|ok〉〈ok|⊥L〈fail|E〈fail|W

Figure 4. Circuit diagram representation of the gedankenexperiment. The actions of the agents during the
protocol induce isometries (boxes) that act on particular subsystems (wires). For example, the measurement
of S by agent F in the second protocol step, which starts at time n:10, can be regarded as an isometry U00→10

S→L

of the form (2) from S to F’s lab, L. The subsystems labelled by F̄ , F , W̄ , and W contain the agents
themselves, i.e., F̄, F, W̄, and W, respectively. Similarly, D̄, D, Ē, and E are “environment” subsystems,
which include the agents’ measurement devices and everything connected to them.

tems [rather than the universe] must obey Bohmian mechanics, we ‘commit redundancy and risk
inconsistency.’”

The gedankenexperiment presented in this work shows that this risk is real. Indeed, if the agents
applied the Bohmian equations of motion directly to the relevant systems around them, rather
than to the universe as a whole, their reasoning would be the same as the one prescribed by (Q).
Consequently, sF̄Q, sFQ, sW̄Q , and sWQ of Table II would all hold. But since Bohmian mechanics also
satisfies (S), this would imply a violation of (C). (This finding should not be confused with the known
fact that, if the spatial position of a particle is measured, the Bohmian position of the measurement
device’s pointer is sometimes incompatible with the Bohmian position of the measured particle [69–
74].)

The directive of [34] that Bohmian mechanics should be applied to the entire universe means that
the agents must model themselves from an outside perspective. This ensures that they all have the
same view, so that reasoning according to (C) is unproblematic. But then, because of Theorem 1, (Q)
is necessarily violated. This is indeed confirmed by an explicit calculation in Bohmian mechanics,
which reveals that sF̄Q is invalid. Furthermore, and in contrast to standard quantum mechanics, the
time order of the measurements carried out by W̄ and W is relevant. If the latter measured first
then, according to Bohmian mechanics, statement sW̄Q would be invalid instead.

This contradiction to standard quantum mechanics raises the question under what circumstances
reasoning according to (Q) is still allowed in Bohmian mechanics. A candidate criterion could be that
the memory of the system’s initial state should still be available at the time when the measurement
is completed, so that the prediction can be verified. The validity of agent F̄’s statement sF̄Q, for
instance, could then be denied on the grounds that F̄ is herself subject to a measurement, which
may destroy her memory of what spin state she prepared. This argument does however not work.
The reason is that, in the relevant case when w̄ = ok, the value of r is retrievable by virtue of
statements sW̄Q and sFQ, which means that full information about the spin direction chosen by F̄ is
still available at the time when w is observed.
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Analysis within the CH framework

In the consistent histories (CH) framework, statements about measurement outcomes are phrased
in terms of histories. These must, by definition, be elements of a whole family of histories, called
a framework, that satisfies certain consistency conditions. In the gedankenexperiment proposed in
this work, a possible history would be

s1 = “Outcomes r= tails, z= + 1
2

, w̄= ok, and w= ok were observed (at times 0:10, 0:20, 0:30,
and 0:40, respectively).”

To verify that s1 is indeed a valid history, one has to construct a family containing this history. It is
straightforward to check that one such family is the set consisting of s1 together with the additional
histories

s2 = “Outcomes r= tails, z=+ 1
2

, w̄=ok, and w= fail were observed (at the respective times).”

s3 = “Outcomes r=heads, z=+ 1
2

, and w̄=ok were observed (at at the respective times).”

s4 = “Outcomes z=− 1
2

and w̄=ok were observed (at at the respective times).”

s5 = “Outcome w̄= fail was observed at (the respective time).”

The CH framework contains the Born rule as a special case and hence fulfils Assumption (Q). Since
it also satisfies (S), it follows from Theorem 1 that it violates (C). To illustrate how this violation
manifests itself, we may consider a shortened version of history s1, which leaves the values of z and
w̄ unmentioned:

s′1 = “Outcomes r= tails and w=ok were observed (at times 0:00 and 0:40, respectively).”

The CH formalism provides a rule to assign probabilities to these histories, which turn out to be

Pr[s1] = 1/12 and Pr[s′1] = 0 . (5)

This is in disagreement with the fact that s′1 is just a part of history s1, i.e., s1 =⇒ s′1.
The CH formalism accounts for this disagreement by imposing the rule that logical reasoning

must be constrained to histories that belong to a single framework, which is not the case for s1

and s′1. Comparing them thus amounts to violating this rule. (This may be compared to the
“three box paradox” [75], where calculations in three different consistent frameworks yield mutually
incompatible probability assignments; see Sec. 22 of [37] as well as [76] for a discussion.)

Nevertheless, the gedankenexperiment exhibits an ambiguity of the CH formalism when it comes
to decision problems, such as the one of the casino example described in Section III. Within a
framework that contains history s′1, the gambler’s reasoning is correct, for Pr[s′1] = 0. Conversely,
considering the framework that contains history s1, it is readily verified that the other histories, s2,
s3, s4, and s5, have probabilities 1

12 , 0, 0, and 5
6 , respectively. All non-zero probability histories of

this framework that agree with the observation w̄ = ok thus assert that r = tails, in agreement with
the casino’s argument. The answer to the question whether the casino has to pay the gambler or
vice versa hence depends on the choice of the framework. According to the CH approach, this choice
is up to the physicist who employs the formalism.

Analysis within QBism

QBism is one of the most far-reaching subjectivistic interpretations of quantum mechanics. It
regards quantum states as representations of an agent’s personal knowledge, or rather beliefs, about
the outcomes of future measurements, and it also views these outcomes as personal to the agent.

The analysis of the gedankenexperiment based on Assumption (Q) is compatible with QBism,
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provided that the derived statements are interpreted appropriately. Since the experimental setup is
fixed, we can assume that the agents all start with the same prior knowledge. However, during the
run of the experiment, they update their knowledge based on observations, which are different for the
different agents. To emphasise this, we suppose that they write their observations and conclusions
into a personal notebook. Agent F, for instance, could then talk about F̄’s notebook entry and say

sFQ = “If I observe z = + 1
2

at time n:20 then I am certain that, if I checked F̄’s notebook at time
n:20, I would read that she observed r = tails at time n:10.”

which is analogous to the corresponding statement in Table II. Here the phrase “is certain that”
expresses a degree of belief and may also be replaced by something like “would bet an arbitrarily
large amount on”. Similarly, F’s statements sF1 and sF2 would read

sF1 = “If I observe z = + 1
2

at time n:20 then I am certain that, if I checked F̄’s notebook at time
n:20, I would read that she is certain that W will announce w = fail at time n:40.”

sF2 = “If I observe z = + 1
2

at time n:20 then I am certain that W will announce w = fail at time
n:40.”

Since F and F̄ started with identical prior knowledge, one would now expect that the implication

sF1 =⇒ sF2

is valid, which corresponds to Assumption (C).

Nonetheless, demanding that (C) holds is necessarily incompatible with QBism. The reason is,
once again, Theorem 1, combined with the fact that QBism satisfies (Q) and (S). Yet it seems
reasonable to demand that a subjectivistic theory should provide rules allowing agents to reason
about other agents. This raises the question whether Assumption (C) could be substituted by
another rule that fits into the framework of QBism. We refer to [77] for a discussion of this question.

[1] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften 23, 823–
828 (1935).

[2] E.P. Wigner, “Remarks on the mind-body question,” in Symmetries and Reflections (Indiana University
Press, 1967) pp. 171–184.

[3] K. Hepp, “Quantum theory of measurement and macroscopic observables,” Helv. Phys. Acta 45, 237–
248 (1972).

[4] Englert, B.-G., “On quantum theory,” Eur. Phys. J. D 67, 238 (2013).
[5] J.S. Bell, “On wave packet reduction in the Coleman-Hepp model,” Helv. Phys. Acta 48, 93–98 (1975).
[6] C.A. Fuchs, “QBism, the perimeter of quantum Bayesianism,” arXiv:1003.5209 (2010).
[7] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi, Reasoning About Knowledge (MIT press, 2004).
[8] C. H. Bennett, “The thermodynamics of computation—a review,” Int. J. Theor. Phys. 21, 905–940

(1982).
[9] D. Deutsch, “Quantum theory as a universal physical theory,” Int. J. Theor. Phys. 24, 1–41 (1985).

[10] L. Hardy, “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories,” Phys.
Rev. Lett. 68, 2981–2984 (1992).

[11] L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev.
Lett. 71, 1665–1668 (1993).
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