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Abstract

Incompatibility of quantum devices is a useful resource in various quantum information
theoretical tasks, and it is at the heart of some fundamental features of quantum
theory. While the incompatibility of measurements and quantum channels is well-
studied, the incompatibility of quantum instruments has not been explored in much
detail. In this work, we revise a notion of instrument compatibility introduced in the
literature that we call traditional compatibility. Then, we introduce the new notion
of parallel compatibility, and show that these two notions are inequivalent. Then,
we argue that the notion of traditional compatibility is incomplete, and prove that
while parallel compatibility captures measurement and channel compatibility, traditional
compatibility does not. Hence, we propose parallel compatibility as the conceptually
complete definition of compatibility of quantum instruments. This paper is on arxiv [1].

Introduction

Incompatibility is one of the basic features of quantummechanics which makes it different
from classical mechanics. Intuitively, two quantum devices are compatible if there exists
a joint device such that implementing the joint device is equivalent to simultaneously
implementing the two original devices. While incompatibility may at first sound like
a drawback, in fact the incompatibility of quantum measurements leads to practical
advantages in various quantum information processing tasks . From the foundational
point of view, the incompatibility of quantum channels is intimately linked to the well-
known no-cloning theorem, and the incompatibility of the identity channel and a non-
trivial measurement is linked to the uncertainty principle.
While the incompatibility of measurements and quantum channels is well-studied,
much less effort has been designated to the study of the incompatibility of quantum
instruments, a more general class of quantum devices capturing measurement processes
in their full detail. In this work, we review a definition of instrument compatibility used
in the literature (which we call traditional compatibility), and address its conceptual
adequacy and its relation to measurement and channel compatibility. We then define
a new notion of instrument compatibility (which we call parallel compatibility) and
argue that this notion is conceptually more in line with the well-established notions of
measurement and channel compatibility. We further prove that parallel compatibility
captures measurement and channel compatibility in a well-defined manner, while
traditional compatibility cannot capture channel compatibility. We therefore propose to
adapt the notion of parallel compatibility instead of traditional compatibility.

Preliminaries

In this section we discuss the preliminaries.

Observables and compatibility

An observable A acting on Hilbert space H of dimension d, is defined as a set of
positive hermitian matrices {A(x)} such that ∑

xA(x) = I. We denote the outcome
set of A is ΩA and therefore, x ∈ ΩA. If all A(x)s are projectors then A is a PVM
and otherwise A is a POVM.

Quantum channels

Quantum channels are the CPTP maps from Λ : S(H1) → S(H2) where S(H) is
the state space on Hilbert space H. A CP unital map Λ∗ : L(H2) → L(H1) is
the dual channel of Λ if Tr[Λ(ρ)A(x)] = Tr[ρΛ∗(A(x))] for all x ∈ ΩA and for all
ρ ∈ S(H) and for any arbitrary observable A = {A(x)}. It is well known that
any quantum channel Λ admits Krauss represenation such that Λ(ρ) = ∑

xKxρK†x
where ∑

xK†xKx = I. Ks are the Krauss operators of Λ. A channel is called a unital
channel if it keeps the maximally mixed state unchanged.

Quantum Instruments

Quantum instruments simultaneously generalise measurements and quantum
channels: they take a quantum state as an input and provide both a classical and a
quantum output. One may think of a quantum instrument as a measurement process,
by associating the classical output with the measurement outcome, and the quantum
output with the post-measurement state. Mathematically, a quantum instrument I
is defined as a set of CP maps {Φx : S(H) → L+(K)} such that ΦI ≡ ∑

x Φx is a
CPTP map. Given a quantum state ρ, the classical output of the instrument is x
and the quantum output is Φx(ρ), both with probability Tr[Φx(ρ)].
Given a measurement A, we say that the above instrument is A-compatible if
Tr[Φx(ρ)] = Tr[ρA(x)] for all ρ ∈ S(H). Note that for every instrument I = {Φx},
there exists a unique measurement A, such that I is A-compatible. Indeed,
we have that Tr[Φx(ρ)] = Tr[ρΦ∗x(I)]. Thus, defining A(x) ≡ Φ∗x(I), we have
that Tr[Φx(ρ)] = Tr[A(x)ρ], and this A(x) is unique, positive semidefinite and∑
xA(x) = I, which follows from the fact that the dual of a CPTP map is a CP

unital map.

Three kinds of compatibility in quantum theory

One possible definition of compatibility of quantum devices is that they can be
performed jointly. That is, a pair of devices is compatible if there exists a joint
device, such that applying the joint device reproduces both of the outcomes of
the compatible devices. If two devices are not compatible, we say that they are
incompatible. Arguably, the most studied notions of compatibility in quantum
theory are the following [2]:
1. Measurement compatibility: Two measurements A = {A(x)} and B = {B(y)}
are compatible if there exists a measurement G = {G(x, y)} with outcome set ΩG =
ΩA × ΩB such that

A(x) =
∑
y

G(x, y); B(y) =
∑
x

G(x, y) (1)

for all x ∈ ΩA and y ∈ ΩB. Through measuring G, one can simultaneously recover
the outputs of both A and B. That is, the distribution p(x, y) ≡ Tr[G(x, y)ρ] is a
joint distribution of p(x) ≡ Tr[A(x)ρ] and p(y) ≡ Tr[B(y)ρ] for all ρ.
2. Channel compatibility: Two quantum channels Λ1 : S(H) → S(K1) and Λ2 :
S(H) → S(K2) are compatible if there exists a quantum channel Λ : S(H) →
S(K1⊗K2) such that Λ1(ρ) = TrK2[Λ(ρ)] and Λ2(ρ) = TrK1[Λ(ρ)] for all ρ ∈ S(H).
Through implementing the channel Λ, one can simultaneously recover the outputs
of both Λ1 and Λ2. That is, Λ(ρ) is a joint state of Λ1(ρ) and Λ2(ρ) for all ρ.
3. Measurement-channel compatibility: A measurement A = {A(x)} acting on the
Hilbert space H and a quantum channel Λ : S(H)→ S(K) are compatible if there
exists a quantum instrument I = {Φx : S(H) → L+(K)} such that Tr[Φx(ρ)] =
Tr[ρA(x)] for all x ∈ ΩA and ρ ∈ S(H) and ∑

x Φx = Λ. Through implementing
the quantum instrument I, one can simultaneously recover the outputs of both A
and Λ.

Main results

In this section, we discuss the main result.
A. Definitions and concepts

Definition 1: (Traditional compatibility) Two quantum instruments
I1 = {Φ1

x : S(H)→ L+(K)} and I2 = {Φ2
y : S(H)→ L+(K)} are (traditionally)

compatible if there exists an instrument I = {Φxy : S(H)→ L+(K)} such that∑
y Φxy = Φ1

x and ∑
x Φxy = Φ2

y for all x, y.
This definition appears in Ref. [3, Definition 3], and in Ref. [4, Definition 2.5]. The same
definition is given in Ref. [5, page 15], under the name “coexistence”.
Definition 2: (Weak compatibility) Two quantum instruments I1 = {Φ1

x : S(H)→
L+(K)} and I2 = {Φ2

y : S(H)→ L+(K)} are weakly compatible if there exists a
quantum channel Λ : S(H)→ S(K) such that ∑

x Φ1
x = ∑

y Φ2
y = Λ.

It is known that if a set of instruments is compatible then it is also weakly compatible,
but it is easily seen that converse is not true in general [4].
Here, we propose a new definition of instrument compatibility, which we refer to as
parallel compatibility.
Definition 3: (Parallel compatibility) Two quantum instruments I1 = {Φ1

x : S(H)→
L+(K1)} and I2 = {Φ2

y : S(H)→ L+(K2)} are parallelly compatible if there exists an
instrument I = {Φxy : S(H)→ L+(K1 ⊗K2)} such that ∑

y TrK2Φxy = Φ1
x and∑

xTrK1Φxy = Φ2
y for all x, y.

For later convenience, we provide an alternative (but equivalent) definition of parallel
compatibility.
Definition 4: Two quantum instruments I1 = {Φ1

x : S(H)→ L+(K1)} and
I2 = {Φ2

x : S(H)→ L+(K2)} are parallelly compatible if there exists a quantum
instrument I = {Φz : S(H)→ L+(K1 ⊗K2)} such that Φ1

x = ∑
z p1(x|z)TrK2Φz and

Φ2
y = ∑

z p2(y|z)TrK1Φz, where p1 and p2 are conditional probability distributions.
Proposition 1:Definition 4 is equivalent to Definition 3.

(a) Traditional compatibility: Schematic representation of Definition 1. Recovering the
quantum output of either I1 or I2 can be done by first implementing the joint instrument I
on the state ρ and then performing the post-processing of outcomes i.e., taking the marginal
over either x or y. The downward arrows represent quantum systems. Clearly, in this case
there is only one output quantum system.

(b) Parallel compatibility: An example of parallel simultaneous implementation of two
instruments (according to Definition 3, corresponding to Example 1. The simultaneous
implementation of I1 and I2 can be done through the following steps: (i) implementing the
channel Λ on the state ρ which is the joint channel of the compatible channels Λ1 and Λ2
(where Λ1(ρ) and Λ2(ρ) can be considered as the approximate unequal clones (unless Λ1 = Λ2)
of the state ρ, in general and therefore, it can be considered as approximate asymmetric
cloning), and then (ii) applying the instruments J1 and J2 on Λ1(ρ) and Λ2(ρ) respectively,
such that J1 ◦ Λ1 = I1 and J2 ◦ Λ2 = I2. The existence of such a channel Λ and such
instruments J1 an J2 implies the parallel compatibility of the instruments I1 and I2, as
explained in Example ??. The downward arrows represent quantum systems. Clearly, in this
case there are two output quantum systems.

Figure 1: Schematic representation of joint instruments for traditionally (Fig. 1a) and parallelly (Fig. 1b)
compatible instruments.

Example 1: An example of parallelly compatible instruments Consider two compatible
quantum channels, Λ1 : S(H)→ S(H1) and Λ2 : S(H)→ S(H2) with the joint channel
Λ : S(H)→ S(H1 ⊗H2). Therefore, since from the no-signaling principle,
implementation of local quantum channel on one side does not change the density
matrix on the other side, for any arbitrary quantum channel Γ1 : S(H1)→ S(K1) and
Γ2 : S(H2)→ S(K2), we have that TrK2(I⊗ Γ2) ◦ Λ = Λ1 and TrK1(Γ1 ⊗ I) ◦ Λ = Λ2.
Now consider a pair of arbitrary quantum instruments J1 = {Φ′1x : S(H1)→ L+(K1) :∑
x Φ′1x = Γ1} and J2 = {Φ′2y : S(H2)→ L+(K2);

∑
y Φ′2y = Γ2}. Consider another pair

of instruments I1 = J1 ◦ Λ1 = {Φ1
x = Φ′1x ◦ Λ1 : S(H)→ L+(K1)} and I2 = J2 ◦ Λ2

= {Φ2
y = Φ′2y ◦ Λ2 : S(H)→ L+(K2)}. Then, we show that the instrument I =

{Φxy = (Φ′1x ⊗ Φ′2y ) ◦ Λ : S(H)→ L+(K1 ⊗K2)} is a joint instrument of I1 and I2.
Clearly, for all x

Φ1
x = Φ′1x ◦ Λ1

= Φ′1x ◦ TrK2(I⊗ Γ2) ◦ Λ
= Φ′1x ◦ TrK2(I⊗

∑
y

Φ′2y ) ◦ Λ

= TrK2

∑
y

(Φ′1x ⊗ Φ′2y ) ◦ Λ

=
∑
y

TrK2Φxy (2)

Similarly, Φ2
y = ∑

xTrK1Φxy for all x. Hence, I1 and I2 are parallelly compatible with the
joint instrument I.
Next, we show that the notion of traditional compatibility of instruments and that of
parallel compatibility of instruments are conceptually different.
Proposition 2: There exist pairs of quantum instruments which are parallelly
compatible, but not traditionally compatible.
Proposition 3: There exist pairs of quantum instruments which are traditionally
compatible, but not parallelly compatible.

B. Arguments against traditional compatibility
In the previous section, we have introduced two notions of instrument compatibility and
showed that these notions are conceptually different (neither of them implies the other).
Here, we argue that the traditional notion has significant drawbacks.
Let us recall that measurements are devices with a quantum input and a classical output,
while channels are devices with a quantum input and a quantum output. Furthermore,
we say that a pair of such devices is compatible if there exists a joint device that upon
taking a quantum input, reproduces both of the outputs of the original devices. For
measurements, this means that the joint measurement produces a classical output that is
the joint measurement outcome of the two compatible measurements. For channels, this
means that the joint channel produces a quantum output that is the joint state of the
outputs of the compatible channels. According to this principle, when one is looking for
a definition of compatibility of instruments, one should look for a joint instrument that
reproduces both the joint classical and the joint quantum output of the compatible
instruments.
It is clear from Definition 1 that the traditional notion of instrument compatibility
provides a joint instrument with a single quantum output. Thus, by design, the
traditional definition does not allow for producing a simultaneous quantum output of
both of the compatible quantum instruments. Furthermore, this definition only applies
to instruments with the same output Hilbert space. Note that for traditionally
compatible instruments, one can only recover a single quantum output via classical
post-processing. This is not the case for parallel compatibility, where the joint
instrument produces a joint state, whose marginals coincide with the quantum outputs
of the compatible instruments. Indeed, after performing the joint instrument, one has
access to both of the quantum outputs, and one can perform further operations on both
of them simultaneously. Thus, we argue that the traditional notion of instrument
compatibility does not capture compatibility in the same way as the well-established
notions of measurement and channel compatibility do.
As further justification for our argument, the following two propositions show that while
traditional compatibility of instruments captures measurement compatibility, it can never
capture channel compatibility.
Proposition 4: Two measurements A and B are compatible if and only if there exist
an A-compatible instrument IA and a B-compatible instrument IB such that IA and
IB are traditionally compatible.
Proposition 5: The traditional compatibility of quantum instruments cannot capture
the compatibility of quantum channels.

C. Arguments for parallel compatibility
In this section, we argue that parallel compatibility does not have the flaws of traditional
compatibility. In the previous section, we already argued for this from the conceptual
viewpoint—that is, parallel compatibility allows for the simultaneous recovery of both of
the quantum outputs of the compatible instruments. Here, we further justify the
adequacy of parallel compatibility by showing that this notion captures the idea of
measurement compatibility, channel compatibility and measurement-channel
compatibility. We summarise these findings in the following theorem.
Theorem 1: Parallel compatibility of instruments captures measurement compatibility,
measurement compatibility and measurement-channel compatibility.
1. Two measurements, A and B, are compatible if and only if there exist an
A-compatible instrument IA and a B-compatible instrument IB such that IA and IB
are parallelly compatible.
2. Two quantum channels, Φ1 : S(H)→ S(K1) and Φ2 : S(H)→ S(K2), are
compatible if and only if there exist two parallelly compatible instruments
I1 = {Φ1

x : S(H)→ L+(K1)} and I2 = {Φ2
y : S(H)→ L+(K2)} such that ∑

x Φ1
x = Φ1

and ∑
y Φ2

y = Φ2.
3. If an A-compatible instrument IA = {ΦA

x : S(H)→ L+(K1)} and a B-compatible
instrument IB = {ΦB

y : S(H)→ L+(K2)}, such that ∑
x ΦA

x = ΦA and ∑
y ΦB

y = ΦB,
are parallelly compatible, then A and B are both compatible with both ΦA and ΦB.

Next, we show that even for a single measurement, two different instruments that are
compatible with it, may not be parallelly compatible, as the following example shows:
Example 2: (Two parallelly incompatible instruments associated with the same
measurement) A trivial measurement J = {J(x) = pxI} is compatible with any
quantum channel Λ through the instrument IJ,Λ = {pxΛ} [2]. Let us consider a channel
Γ, which is incompatible with Λ. Clearly, J is also compatible with the quantum channel
Γ through the instrument IJ,Γ = {pxΓ}. From Theorem ??, we know that if two
instruments are parallelly compatible, then their corresponding channels are compatible.
Then, since Γ and Λ were chosen to be incompatible, the instruments IJ,Γ and IJ,Λ
cannot be parallelly compatible.

Note: Arindam Mitra (underlined) is the presenting author in QIP 2022.
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