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Abstract

In these lectures I’m going to introduce the formalism of process theories as a

framework for studying general physical theories. This is a diagrammatic formal-

ism, which, as we will see in the second lecture, subsumes the more widely studied

framework of generalised probabilistic theories. This provides a complementary per-

spective which focuses on composition of processes, which can be contrasted with

the standard perspective which focuses on the geometry of single systems. In the

final lecture we will zoom out and consider the landscape of physical theories, and

see how there is an interesting structure to this landscape which allows us, amongst

other things, to talk about emergence of one theory from another.

*** WARNING ***

This is a rough first draft of these lecture notes. Proofs of many of claims are sketches

or in places non existent, and there is an appalling lack of citations. I hope to fix

these issues by the end of the summer school and get a new version of these notes

out to you soon. Any feedback on these notes is therefore very much appreciated!
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Lecture 1

The basics

It is well known now that quantum theory is a fantastically successful physical
theory. From its origin as a weird explanation for a few peculiar phenomena, it
has spread to become the foundation of all of modern physics1. It has passed every
experimental test that we have thrown at it and now forms the basis of a vast range
of technologies, and promises to lead to even more.

In these lectures, however, I’m not actually going to talk about quantum theory
very much. Instead, I’m going to talk about alternative physical theories, that
is, hypothetical ways that the world could be if it were not quantum. Given the
fantastic successes of quantum theory you might well be asking yourself why you
should care about these alternatives. Why should we care about theories which have
absolutely no experimental support and which have not led (at least directly) to any
technologies what so ever?

I think this is a pretty fair question so I’d like to start by trying to provide some
motivation for looking at such theories.

1.1 Five reasons to study general physical theories

Reason 1: Quantum theory is probably not fundamental.

From a historic perspective, there is no good reason to believe that we should be at
the unique point in time where we have happened to stumble upon a fundamental
theory of nature, it seems much more likely that just as with all of our other theories
that we have developed, that so too will quantum theory ultimately be replaced by a
deeper theory of nature. Let us not be as naive as the Nobel prize winner Michelson,
who in 1903 claimed that classical physics was complete, only to have to eat his words
two years later when the photoelectric effect was discovered.

The difficulty that we have with unifying quantum theory with our other best physi-
cal theory, namely General Relativity, should also give us pause. Something is going
to have to give, and it seems likely that both quantum theory and general relativity
will need to be modified to some extend to achieve a satisfactory unification.

1With the notable exception of general relativity which we will talk more about later.
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It is therefore interesting to study a general framework which can describe hypothet-
ical theories, because it might be the case that one of them could one day replace
quantum theory as our best theory. It might be unlikely that we can, absent exper-
imental evidence, pinpoint which theory is more fundamental, but perhaps we can
learn something about it anyway.

Alternatively, if quantum theory does happen to be fundamental, then should there
not be some explanation for this? For example, could it be that all other theories
are logically inconsistent? By trying to push beyond quantum theory we could also
hope to find such an explanation.

Reason 2: To learn more about quantum theory itself.

Once we have situated quantum theory in some space of general physical theories,
we can start to understand quantum theory itself on a deeper level. For example,
we can start to ask, what distinguishes quantum theory from all of the alternatives?
Can we find some set of physical principles which single it out? Ultimately, we can
hope to find some explanation for why quantum theory seems to describe nature so
well.

Moreover, we can also start to explore the possibilities and limitations of quantum
theory for various information theoretic tasks, and, hence, what the scope is for
developing quantum technologies. For example, we know that there are limits on
the sorts of correlations that can be obtained within quantum theory relative to
general physical theories, and this then translates into limits on communication
tasks.

Finally, the different frameworks that have been developed for describing general
physical theories each offer a different perspective on what a quantum theory is. For
example, is it a theory of information, or of logic, or of processes and composition?
While there may not be any way to choose one of these over the others, having
a multiplicity of perspectives is useful for having different ways of thinking and
different mathematical tools to attack interesting problems.

Reason 3: The other theories are relevant.

Well, maybe not all of them, but some of them are. The obvious example here
is classical theory, which sits with quantum theory in these general frameworks.
Whilst classical theory is not nowadays viewed as fundamental physics, it is still
important to our understanding of the world. Similarly, we can also talk about
different subtheories of quantum theory as living inside this framework, for example,
the widely studied stabilizer subtheories can be nicely described, as can various
subtheories that appear in the study of quantum resources such as entanglement,
coherence, and so on.

Moreover, various other theories are relevant for various other lectures here at the
summer school. Paul Skrzyczyk will talk about no-signalling theories, Matt Leifer
will talk about epistemically restricted theories, David Schmid will talk about onto-
logical theories, and Konstantinos Meichanetzidis will talk about theories for com-
putational linguistics. All of these can be thought of as living inside the framework
that I will introduce. So while they might not be designed to represent fundamental
physics, it doesn’t mean that they aren’t interesting to study!
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Reason 4: The relationships between quantum theory and other theories are rele-
vant.

This isn’t really an independent point but I thought it worth putting it separately
to highlight it. The idea is that once we have a framework which can describe lots
of different physical theories, then we can also start to ask about the relationships
between them.

In particular, we can start to ask how one theory can be seen to emerge from another
theory. For example, how does classical theory emerge from quantum theory as
we know that it should to describe our every day experiences? Similarly, can we
understand quantum theory as emerging from some deeper theory of nature?

Similarly, we can start to ask whether one theory can be used to provide some sort
of explanation for another theory, for example, can we find a classical explanation
for the quantum phenomena that we see? If so, is this a natural explanation or does
it have some pathological features?

My reason: It’s fun.

All of the previous reasons are the sorts of things that you would have to put on a
grant application, and I do think they are important reasons, but they aren’t really
what drove me to study these things in the first place.

For me personally, I just find it intrinsically interesting to contemplate the different
ways that the world could be. It’s basically just Sci-Fi taken to the extreme!

1.2 Frameworks for general physical theories

Hopefully you now are persuaded that there is some significance to studying general
physical theories, but the question then is how can you even get going with such a
project? Well, there are broadly two approaches that can be taken.

The first is simply to try to cook up some new theory from scratch, or possibly, to
create some new theory by modifying an existing theory such as quantum theory.
There is a pretty big literature which takes this approach, but I find it quite unsatis-
fying, I don’t see how going case-by-case will let us tackle some of the big questions
that we talked about in the previous section.

The second approach is more principled, we try to find some basic principles that we
think any physical theory should satisfy and from these we construct a mathematical
framework which allows us to describe and compare many different general theories.
One commonly considered principle is the idea that no physical theory should permit
sending information faster than the speed of light – essentially, that it should be
compatible with relativity theory (in some minimalistic sense). This lets us revisit
some of the theories constructed via the first method by seeing if they define valid
theories within a given framework. Often, by doing this you will find that they
do not, in which case they violate some cherished principle, and, other times, you
find that they are within the framework but that they might not be as radical a
modification as you might have thought. For example, there are modifications of
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quantum theory which, when understood within a particular framework, turn out
to just be classical theory in disguise!

There are, however, many different frameworks that have been constructed over the
years, each one taking different perspectives on what should be taken as primitive
to all physical theories. To give a non-exhaustive list, we have:

� non-classical logics

� generalised probabilistic theories

� effectus theories

� operational probabilistic theories

� process theories

� causal-inferential theories

� ...

There a pros and cons to each of these formalisms, it really depends on what aspect
of quantum theory you are most interested in studying. They are also by no means
independent of one another (e.g., any modification to logic leads to a modification of
probability theory too) it is therefore also very interesting to study the relationship
between these different approaches. This, however, is well beyond the scope of what
I want to get into here.

There are a couple of important things to comment on here though. The first, is
that the idea of studying general frameworks for physical theories is not at all new,
indeed the origins can be traced back to very shortly after the initial formalisation
of quantum theory. The second is that I don’t believe that any of these frameworks
are complete, in the sense of being able to answer all of the questions I raised in the
introduction. In particular, if we want to find genuine beyond-quantum theories,
such as may be necessary to unify with general relativity, then we may well need
a new or further developed framework. Nonetheless, all of these frameworks have
proved useful and a great deal of progress has been made on the questions that I
posed earlier.

Finally, it is worth commenting on another approach to studying beyond-quantum
physics, which is to focus attention on a particular phenomena such as nonlocality
or steering. One can then consider the scope of possibilities for that particular
phenomena, rather than worrying about developing an entire physical theory. The
advantage of this approach is that we end up with a much simpler object to study,
which helps to make concrete progress on understanding the particular phenomena.
The disadvantage is that without a candidate physical theory underpinning the
full scope of possibilities for the phenomena, then we can’t be sure that it is worth
contemplating this full scope in the first place! Luckily, for certain phenomena it can
be shown that we can get the best of both worlds, that is, one can find a particular
physical theory that can realise the full scope of possibilities for the phenomena.
The classic example of this is the relationship between the study of Bell nonlocality
and the generalised probabilistic theory known as Boxworld.
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1.3 Process theories

In these lectures I’m going to largely focus on the framework of process theories2.
The basic conceptual underpinning of the framework is that one can express (gen-
eral) physical theories in terms of the physical processes that can happen in the
(hypothetical) world, together with how processes can be composed together to
make other processes.

This idea can be formalised in the mathematics of symmetric monoidal categories.
This is great because mathematicians have been studying these things since the 60s,
but is not so great because physicists don’t know about these at all... Well, that
isn’t quite true, the truth is that physicists do know about these things, they just
don’t know that they know!

Physicists are used to drawing little sketches of protocols or experiments to keep
track of what is going on, i.e., to keep track of the information flow within the
protocol or the movement of physical systems between bits of lab apparatus in the
experiment. What process theories allow us to do, is to take these sketches seriously.
That is, rather than just being an informal picture to supplement the mathematics,
these pictures become a formal diagram which is a mathematical object that we can
directly use to prove things. From this perspective, the mathematics of symmetric
monoidal categories is then just a way to make sure that the diagrams behave in the
way that we already intuitively know they should.

In these lectures I’m therefore going to stick with the diagrammatic way of describing
things, if you want to see how this connects to symmetric monoidal categories then
there are plenty of good books that deal with the subject. The fundamental building
blocks of these diagrams are processes, we denote these by labelled boxes

P

c d

a b

, (1.1)

which have input systems A and B at the bottom and output systems C and D
at the top. The kinds of processes that we consider come from a broad range of
fields. They could be physical processes (what we really care about in this course)
but they could also be chemical processes, or biological processes, or computational
processes, or mathematical processes, and much more. To give a few illustrative
examples all of the following are processes:

SPDC

photon

photon photon

, Detector

outcome

photon

Baby

poo

food

noise

love

, Sort

list

list

. (1.2)

2Although, the special cases that I will consider next lecture will end up giving the framework
of operational probabilistic theories which is itself closely tied to the framework of generalised
probabilistic theories, but more on that later.
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Now, the key thing that gives mathematical content to these processes is how the
form diagrams. That is, given a bunch of processes we can wire them together to
describe a new process, for example:

Detector

outcome

SPDC

photon

photon

photon . (1.3)

Not every wiring together of processes makes sense, in particular, it must be the
case that we match system types when we do a wiring. That is, a diagram such as:

Baby

poo

food

noise

love

Sort

list

list

(1.4)

doesn’t really make sense at all!

The kinds of processes that we want to consider here are physical processes, where we
think of the inputs as physical systems that can potentially have a causal influence
over the output physical systems. In this case then it also makes sense to demand
that the wiring should be acyclic. This means that we can imagine that we have an
arrow of time on our diagrams, and that we don’t run into time-travel paradoxes!
That is,

Life?

Murder?

grandfather = {dead, alive}

you = {exist,¬exist}

grandfather = {dead, alive} (1.5)

is not an allowed diagram in a process theory. It is interesting to study process
theories which do not rule out cyclic wirings and so study things like this paradox,
but it is beyond the scope of this course.

The sorts of diagrams that we draw contain some superfluous information, we aren’t
really interested in precisely how the processes are positioned on the page, only on
how they are wired to one another. We therefore say that two diagrams are equal if
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they describe the same wiring of processes. For example

c

G

c
d

a

H

c d

E

b

F

=

c

G

c d

a

H

c d

E

b

F

(1.6)

as both diagrams have all of the processes connected up in the same way, and,
moreover, the way the systems connect “to the boundary” is the same. That is, in
general

c

G

c d

a

H

c d

E

b

F

6=

c

G

c d

a

H

cd

E

b

F

. (1.7)

With these ideas in place I can now formally define what a process theory is.

Definition 1.3.1 (Process theories). A process theory, P, is a collection of processes
which is closed under forming diagrams.

This means that if we have some

d

E

b

,

c

F , G

c d

a

,

c

H

c d

, ∈ P (1.8)

and construct a diagram out of them such as

c

G

c
d

a

H

c d

E

b

F

(1.9)
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then this diagram must be equal to some process P ∈ P

c

G

c
d

a

H

c d

E

b

F

=

c

a

P

c d

b

. (1.10)

To give a potentially more familiar mathematical analogy, part of the definition of a
group is that when we compose two group elements we get another group element.

This gives us the basic definition of a process theory, it is useful to introduce a bunch
more jargon for particular special cases, some of which we have seen already in some
of the diagrams above.

In particular, we have states, which are processes, such as

c

F , (1.11)

that have no inputs; we have effects, which are processes, such as

d

E

b

, (1.12)

that have no outputs. We can wire states and effects together to give processes with
neither inputs nor outputs, such as

d

E
b

D

= S , (1.13)

which are known as scalars. Every process theory has at least one scalar, namely
the empty diagram

(1.14)

which acts as the ‘number 1’ in that it leaves every process invariant:

P

c d

a b

= P

c d

a b

. (1.15)

Every system, a has at least one process, namely the identity process, 1a, which



1.3. Process theories 13

diagrammatically is represented as an empty box

a

a

(1.16)

this acts as an identity in that it leaves every process invariant, for example

P

c d

a b

c

= P

c d

a b

. (1.17)

Every pair of systems, a and b, have a swap process, Sa,b, which is diagrammatically
just a swapping of the wires:

a

a

b

b

. (1.18)

for which our rule ‘that only connectivity matters’ gives a bunch of interesting
conditions, for example:

a b

a

a

b

b =

a b

a b

, (1.19)

which tells us that the wires in process theories do not get tangled up3.

Finally, we have two kinds of wirings that we highlight, sequential

c

G ◦ F
a

:=
G

c

b

F

a

(1.20)

and parallel

c

G⊗ F

a

b

b

:= G

c

b

F

b

a

(1.21)

The diagrams automatically give us a bunch of nontrivial mathematical structure
for these two special cases, for example, that sequential and parallel composition are

3There are generalisations which relax this condition but we won’t go into them here.
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associative, e.g.,

H⊗ (G⊗ F) = H G F = (H⊗ G)⊗ F , (1.22)

and that (as he mentioned earlier) sequential composition has the identity transfor-
mation as a unit.

One of the reasons why it is worth considering all of these special cases is that it
turns out that we can use them as primitive building blocks for our diagrams.

Theorem 1.3.2. Any (acyclic) diagram can be nonuniquely constructed by compos-
ing using the above speical cases.

In fact, this theorem is essentially what gets us to an equivalent definition of process
theories in terms of the symmetric monoidal categories that I mentioned earlier.

Now to try to give a bit of a nontrivial example, lets think about the process theory
of brewing. This has a bunch of different processes and so we can, for example, write
that:

Brewing

· · ·
bottlesofbeer

hops maltswateryeast

=

· · ·
bottlesofbeer

hops malts water

Split

water

water

Heat

water

Mash

Boil

Chill

Bottle

Ferment

yeast

water

(1.23)

and we could go further and compose this with other processes such as

bottleofbeer

Drink
person

person

(1.24)

which satisfies the equation

bottleofbeer

Drink
person

person

Sober Belgian

=

person

Drunk . (1.25)
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There’s one process in the diagram on the right hand side of Eq. (1.23) that we are
yet to discuss, namely, the process

water
(1.26)

which, in this case, represents pouring the hot water coming from the chiller down
the sink. More generally, we use this symbol to represent any sort of discarding
process.

1.4 Discarding

In many process theories there is a way to discard any process. For example, in
the context of brewing we can think of this as ‘throwing something in the bin’ or
‘pouring something down the sink’, but in other contexts it may not be a physical
process but just simply ignoring some system due to lack of interest or not having
access to it.

Regardless of the context they show up in, these processes satisfy some obvious but
very important equations. Firstly

a b
=

a b
(1.27)

which tells us that if we discard two systems together, that this is the same as
discarding the two systems individually. Secondly

F
a

b

=
a

(1.28)

which tells us that if we discard all of the outputs of some process then we may as
well have just discarded the input.

Hidden in this last condition is a subtle but important point about process theories.
We might try to think of situations in which discarding the output is not the same
as discarding the input, but what is happening in such cases is always that there is
some extra output which we are only treating implicitly. If we instead treat them
as explicit outputs then we again will find that this equations holds. Generally a
good rule of thumb for working with process theories is that you need to explicitly
denote all of the relevant systems, if you don’t then you’re likely to make mistakes
and to lose important diagrammatic rules such as the above equation.

If a process theory has discarding maps satisfying Eq. (1.27) then any process F ∈ P
satisfying Eq. (1.28) is said to be ‘causal’ or ‘discard-preserving’.

Definition 1.4.1 (Causal process theories). A causal process theory is a process
theory in which every process is discard-preserving.
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There are a couple of important results that hold for arbitrary causal process theories
that are worth commenting on. First, the empty diagram,

, (1.29)

is the unique scalar for the theory. Secondly for each system a, the discarding effect,

a
, (1.30)

is the unique effect for the system.

With these results in place then we can start to see why these process theories are
called causal. Namely, that they have a sort of ‘compatibility’ with space-time. That
is, if we imagine that these diagrams are actually living inside some space-time such
that the wires are describing world-lines of some physical systems, then any causal
process theory will obey the no-signalling conditions implied by relativity theory!

Let’s illustrate this with a simple example. Consider two parties, Alice and Bob,
who are space-like separated. They have some shared past in the intersection of
their backwards lightcones, which we represent by some bipartite state, and then
they can each do some local process of their part of this bipartite system. The global
picture therefore looks like

CommonPast

sA

A

a

x sB

B

b

y

Alice Bob

. (1.31)

However, let’s now consider what things look like from the perspective of Alice.
Alice doesn’t have access to Bob’s output, and so treats it as if it’s been discarded

CommonPast

sA

A

a

x sB

B

b

y

Alice

. (1.32)

At which point if we are working with a causal process theory then we can use show
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the following:

CommonPast

sA

A

a

x sB

B

b

y

Alice

(1.28)
=

CommonPast

sA

A

a

x sB
y

Alice

(1.33)

(1.27)
=

CommonPast

sA

A

a

x sB
y

Alice

(1.34)

=

CommonPast

sA

A

a

x sB y

Alice

. (1.35)

This means that from Alice’s perspective whatever Bob does is entirely disconnected
from what she does, and, hence, he has no way to send a signal to her. That is,
there can be no superluminal signalling from Bob to Alice.

Of course, the situation is symmetric, so if we look at things from Bob’s perspective
then we will see that there is no possibility of Alice signalling to him either.

By a very similar argument we can also see that if Alice is in the causal future of
Bob, then it is possible for him to signal to her but not vice versa. A more general
argument, but based on the same ideas, is put forward in Ref. [1].

The basic message that I want you to take away from this is the following: complex
physical ideas follow from extremely simple process theoretic concepts.

1.5 Example: stochastic dynamics

Any good physical theory should be able to describe the classical world that we
see around us every day. In the next lecture we will see how this idea can be
used to underpin a formalism of generalised probabilistic theories by demanding
constraints on how classical systems interact with non-classical systems, and in the
third lecture we will see how we can take these classical systems to be emergent
rather than fundamental. Before we get to any of this, however, we need to first
describe the process theory which describes classical physics.

For various reasons that I won’t get into here but other lecturers are sure to do
justice to, it is natural to consider stochastic rather than deterministic classical
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physics. Whether this stochasticity is fundamental or just capturing our ignorance
as to what is going on is an important question but not one that we’re going to get
into right now. The reason for this is that it’s not really pertinent to the process
theory that you get at the end of the day.

We call this process theory Stoch. The systems are given by finite4 sets which
represent the set of ways that the classical system can be. The processes are then
stochastic maps between these sets. If a process has a single input and output, such
as

S

X

Y

, (1.36)

then it is described by a stochastic map:

Definition 1.5.1 (Single input and output stochastic map). A stochastic map S
from the set X to the set Y can be described by a function S : X × Y → [0, 1] ::
(x, y) 7→ S(y|x) such that

∑
y∈Y S(y|x) = 1 for all x ∈ X.

That is S(y|x) tells us the probability that the classical system labelled by Y will
take value y given that the classical system labelled by X took value x. In other
words, it is a conditional probability distribution.

If we have multiple inputs and outputs, such as

X1 Xn

Y1 Ym· · ·

· · ·
S , (1.37)

then things are somewhat more complicated but the basic idea is the same:

Definition 1.5.2 (Stochastic map). A stocahstic map S from the sets {Xi}ni=1 to
the sets {Yj}mj=1 can be described by a function S :

∏n
i=1Xi ×

∏m
j=1 Yj → [0, 1] ::

(x1, ..., xn, y1, ..., ym) 7→ S(y1, ..., ym|x1, ..., xn) such that
∑

yi∈Yi S(y1, ..., ym|x1, ..., xn) =
1 for all xi ∈ Xi.

Next lets look at how these compose, rather than looking at sequential and parallel
composition independently we’ll define the generic case:

X Y

U

V

S

W

R S

S′

=

X Y

U

S′′

W

R S

(1.38)

4This is purely for technical convenience rather than any fundamental reason.
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where S′′ is another stochastic map defined by

S′′ : (X×Y×W )×(U×R×S)→ [0, 1] :: (x, y, w, u, r, s) 7→
∑
v∈V

s(u, v|x, y)s′(r, s|v, w).

(1.39)

This can be seen to include both sequential and parallel by suitably removing sys-
tems, that is,

X Y

U

V

S

W

R S

S′

7→

Y

V

S

R

S′

and

X

U

S

W

S

S′

respectively. (1.40)

This is all much clearer (to me anyway) once we focus on some special cases. For
example, suppose we have a state with a single output,

p
X

: X → [0, 1] :: x 7→ p(x) s.t.
∑
x∈X

p(x) = 1. (1.41)

This is simply a probability distribution over the set X.

If we then compose this with a stochastic map with a single input and output then
we obtain

S

p
X

Y

: Y → [0, 1] :: y 7→
∑
x∈X

S(y|x)P (x) (1.42)

which is using the standard belief propagation formula to use a stochastic map from
X to Y to convert a probability distribution over X into a probability distribution
over Y .

Processes without outputs are a bit weirder, they correspond to the constant unit
function, for example,

Y

: Y → [0, 1] :: y → 1 (1.43)

hence, we see that these are unique for each system and so we have that:

Proposition 1.5.3. Stoch is a causal process theory.

Proof sketch. The stochasticity condition for a stochastic process S from X to Y ,
namely

∑
y ∈ Y S(y|x) = 1 for all x ∈ X, ensures that all S are discard-preserving,

that is, they satisfy Eq. (1.28).
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It is clear what this is useful for when we consider discarding one part of a bipartite
state:

Y
X

p : X → [0, 1] :: x→
∑
y∈Y

p(x, y) (1.44)

that is, discarding in Stoch gives us a way to compute marginal probability distri-
butions!

Next we will consider the convex structure of processes in Stoch.

Proposition 1.5.4. The set of stochastic maps from X to Y forms a convex set.

Proof. In particular, given Si : X × Y → [0, 1] we can define
∑

i piSi :: (x, y) 7→∑
i piSi(y|x) it is easy to check that this is indeed a valid stochastic map.

Firstly, pi and Si(y|x) are all greater than zero so
∑

i piSi(y|x) ≥ 0. Moreover,
Si(y|x) are all less than one, hence

∑
i piSi(y|x) ≤

∑
i pi = 1. This means that∑

i piSi : X × Y → [0, 1] as we require.

Secondly,
∑

y

∑
i piSi(y|x) =

∑
i pi
∑

y Si(y|x) =
∑

i pi1 = 1 for all x ∈ X as we
require.

This geometry is particularly simple in the case of states. Let us define the delta-
function distributions as δx : X → [0, 1] :: x′ 7→ δx,x′ , then any other probability
distribution p can be uniquely written as a convex combination of these δx, that is,
p =

∑
x p(x)δx. In other words, the set of probability distributions over the set X

form a simplex with vertices labelled by x ∈ X.

It is tempting to incorporate these convex sums into our diagrammatic formalism,
for example, to write things like:

S

C
D

A

Si

C D∑
i∈I

pi
. (1.45)

However, apriori we do not know if this is consistent as there are different ways to
understand this diagram, that is as:

S

C
D

A

Si

C D∑
i∈I

pi
or

S

C
D

A

Si

C D∑
i∈I

pi
, (1.46)



1.5. Example: stochastic dynamics 21

where in the first case we first take the convex combinations and then compose the
processes, whereas in the second case we first compose the processes and then take
the convex combinations.

Conveniently for us these turn out to be equivalent, and so we can use these convex
sums as we would like!

Proposition 1.5.5. Composition in Stoch is convex linear.

Proof sketch. The crux of this is that

∑
v∈V

(∑
i

pisi(u, v|x, y)

)
s′(r, s|v, w) =

∑
i

pi

(∑
v∈V

si(u, v|x, y)s′(r, s|v, w)

)
.

This means that our convex sums are free to float around diagrams, which is great
because it means that our idea that ‘only the wirings in a diagram matter’ still holds.

Nonetheless, there is something a bit unsatisfying about using sums in this way,
as they add a connection without having it as an explicit part of the diagram, for
example, we can write the perfectly correlated bipartite distribution as:

∑
x∈X

1

|X| x

X

x

X

, (1.47)

which leaves us without any explicit diagrammatic connection between the two sys-
tems even though they should not be viewed as being independent of one another.
Luckily in Stoch there is a nice way to get around this, we can always turn the
convex coefficients pi into a probability distribution and work with that instead.

Theorem 1.5.6. For any convex combination of stochastic maps
∑

i∈I piSi where
Si have input X and output Y , we can always find a stochastic map S with inputs
I and X and output Y such that:

Si

Y∑
i∈I

pi

X

= S

Y

Xp
I

. (1.48)

Proof. We can simply define p by p : i→ [0, 1] :: i→ pi and S by S : (I ×X)×Y →
[0, 1] :: (i, x, y) 7→ Si(y|x). It can then easily be verified that this is indeed a valid
stochastic map as

∑
y∈Y Si(y|x) = 1 for all i ∈ I and x ∈ X.

The definition of convex combinations means that the LHS is described by a stochas-
tic map

Si

Y∑
i∈I

pi

X

: X × Y → [0, 1] :: (x, y) 7→
∑
i∈I

piSi(y|x) (1.49)
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whilst the definition of composition mean that the RHS is described by a stocahstic
map

S

Y

Xp
I

: X × Y → [0, 1] :: (x, y) 7→
∑
i∈I

p(i)S(y|i, x) (1.50)

which we can then show, by the definition we gave of p and S that
∑

i∈I p(i)S(y|i, x) =∑
i∈I piSi(y|x). This means it is the same stochastic map as the LHS which com-

pletes the proof.

If we apply this to the case of the perfectly correlated distribution then we find that:

∑
x∈X

1

|X| x

X

x

X

=

X X

µ
X

, (1.51)

where the white dot is the ‘copy dot’ and µ is the uniform distribution overX. On the
RHS we therefore can see that there is an explicit diagrammatic connection between
the two versions of X, and so correlations are now manifest in the diagrammatic
language.

1.6 Summary

In this lecture I hope to have persuaded you of the interest in studying physical
theories other than quantum theory, and given some idea of what this is useful
for. I’ve introduced the basic diagrammatic formalism of process theories, and in
particular, shown how we can define a particular class of process theories – causal
process theories – which have the nice property that signalling is necessarily medi-
ated by systems, and so they are (in a minimal sense) compatible with relativity
theory. Finally, I introduced a key example of a process theory Stoch which rep-
resents classical stochastic dynamics. This will be a crucial process theory in going
forwards to general probabilistic theories in the next lecture. Essentially, we will see
that general probabilistic theories are those that are compatible with Stoch in the
‘obvious’ way.
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General probabilistic theories

As I have mentioned already, the scope of process theories is extremely broad cov-
ering examples from all natural sciences as well as mathematics, computer science,
and so on. There are therefore many important questions which we can’t hope to
answer at this level of generality. For example, suppose we are interested in the in-
formation processing capabilities of some candidate physical theory, maybe we want
to see whether it permits better secure key distribution than quantum theory, then
in many process theories this is not even a meaningful question.

In this lecture we will therefore narrow our scope to a smaller class of process theories
for which such questions are well posed. This (for all practical purposes) leads
us to the framework of Operational Probabilistic Theories (OPTs) which can be
thought of as a variant of the Generalised Probabilistic Theory (GPT) framework.
These frameworks have been used to study various features of quantum theory in
a generalised setting, such as: cryptography, computation, thermodynamics, and
much more. One of the most exciting things to come out of this framework are
various reconstructions of quantum theory, that is, finding small sets of physical
principles which can be articulated within the framework and which together single
out quantum theory as the only GPT satisfying them all. This provides insight
into ‘why’ quantum theory – if nature was anything else then one of these physical
principles would necessarily be violated!

I will now introduce the basics of this formalism in three steps. In the first step we
will consider a class of process theories that have a classical interface, in the second
step we will throw away irrelevant information about processes in order to obtain a
GPT, finally, in the third step we will obtain a representation of the GPT in terms
of real vector spaces.

2.1 Step 1: the classical interface

Suppose we have some process theory P which we want to represent a candidate
theory to explain our world. Then we know that this must contain the classical
world, described by Stoch as a subtheory. That is, we have certain systems in the
world that are classical and evolve under stochastic dynamics. This is not to say

23
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that we necessarily have systems that are fundamentally classical, but that at least
on an effective level these must be around1.

Formally, we are demanding that Stoch ⊆ P. It will be useful to diagrammatically
distinguish the systems in this subtheory from the more general systems, we will do
so by drawing general systems as:

a , (2.1)

and those in the classical subtheory as:

X . (2.2)

Now, it is not enough to simply have classical systems around in our theory, we want
to be able to use these classical systems as an interface with the full theory. That
is, we think about the classical systems as our probes that we can manipulate which
let us learn something about the wider world. For example, these classical systems
represent the settings that we have on bits of experimental apparatus, or the pointer
positions that indicate different outcomes of a measurement. This means that there
must be some minimal kinds of interactions that we demand between our classical
and general systems. That is, there must be certain processes

X a

Y b

I (2.3)

such that

X a

Y b

I 6=

X a

Y b

S G (2.4)

for any S and G, as otherwise, the interaction between the classical and general world
would be trivial!

Certain types of interactions correspond to some familiar sorts of processes. For
example:

X

a

P (2.5)

is a controlled preparation procedure, that is, we have some setting X which controls

1Indeed, in the last lecture we will see how to understand these classical systems as emergent
from more fundamental systems.
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which state of a is prepared. Moreover, we have:

Y

a

M (2.6)

which is a destructive measurement procedure, that is, we have some system a which
is measured generating some probability distribution over the outcomes Y .

We will return to more adding more stringent requirements to these interactions
shortly, but first let us consider what happens if we construct a diagram with only
classical inputs and outputs. The fact that it only has classical inputs and outputs
still leaves open the possibility that there are some non-classical systems in the
interior of the diagram, for example, if we compose the controlled preparation with
the destructive measurement we obtain the diagram:

Y

a

M

X

P

(2.7)

we demand that this is simply a stochastic map from X to Y , that is, that there
exists a stochastic map S such that:

Y

a

M

X

P

=

X

Y

S . (2.8)

This is because if we perform such an experiment then at the end of the day we will
collect data about which outcomes we observe for each settings, and given sufficient
runs of the experiment this will converge to a conditional distribution S(y|x) which
defines the stochastic map S. The same holds for more complicated diagrams so
long as the inputs and outputs are all classical.

Formally we can succinctly state this as:

Principle 1. Stoch is a full subtheory of P.

Where the term ‘full’ simply means that every process with inputs and outputs from
Stoch is necessarily a process from Stoch.
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Next, it is natural to assume that if we have some set of processes
a

b

Ti


i∈I

(2.9)

that we can implement, then we should be able to choose which one to implement
with a control variable, I. Formally this means that there must exist a classically
controlled transformation

a

b

T

I

(2.10)

where the classical system I is now a setting variable controlling which of the Ti are
implemented, i.e., satisfying

a

b

T

i
I

=

a

b

Ti (2.11)

for all i ∈ I.

This brings us to our second principle:

Principle 2. All classically controlled transformations exist in P.

Note that this holds also just within Stoch, indeed, this is what we used at the end
of the last lecture to turn sums into explicit systems. That is, the stochastic map S
in Eq. (1.50) is the classically controlled process for the stochastic maps {Si}i∈I in
Eq. (1.49).

A natural question to ask is, we used controlled stochastic maps to represent convex
combinations of stochastic maps, can we extend this to general transformations?
The answer turns out to be yes! That is, we can define:

Definition 2.1.1 (Convex combinations). We can define a convex combination of
general processes as:

∑
i∈I

pi

a

b

Ti :=

a

b

T

p
I

, (2.12)

where T is the classically controlled process for the {Ti}i∈I and p : I → [0, 1] :: i 7→ pi.

Showing that this is a consistent definition is a bit beyond the scope of these lectures,
but hopefully the intuition is clear: a convex mixture of the processes Ti can be
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thought of as having some setting which toggles between the different processes
which is chosen according to some probability distribution.

Similarly, we can then show that composition with other processes is convex lin-
ear with respect to this notion of convex combination that we have defined. This
is essentially because composing T with some other process T′ gives a classically
controlled process for the composite of the Ti’s with the T′.

We can use this notion of convex combination to argue that the set of processes from
a to b forms a convex set, but, unlike in the case of Stoch it isn’t really clear at
the stage what this convex set actually looks like. This is resolved in the next step
which will bring us to the standard geometric picture of GPTs.

2.2 Step 2: removing operationally irrelevant informa-
tion

Within the diagrams that we are drawing in P there is (typically) a great deal of in-
formation which is irrelevant to making predictions about outcomes of experiments.
Such superfluous information is known as the context of the process2. The idea of a
generalised probabilistic theory is that it should contain no superfluous information,
that is, it is a bare bones description which contains only what is strictly necessary
for making experimental predictions.

This idea should be fairly familiar from quantum information theory, we can work
with ensembles of pure states {(pi, |ψi〉)}i∈I , but we know that there are multiple
ensembles of pure states which lead to the same outcome statistics for all mea-
surements, and hence we work with density matrices ρ =

∑
i∈I pi |ψi〉 〈ψi| instead.

Density matrices can then be seen as a minimal description capturing only the in-
formation that is strictly necessary to make predictions about experiments.

We can capture this idea much more generally by introducing the notion of opera-
tionally equivalent processes:

Definition 2.2.1 (Operational equivalence). Two processes T1 and T2 are said to
be operationally equivalent, denoted

a

b

T1 ∼

a

b

T2 , (2.13)

2This is (formally) the same notion of context that David will talk about in depth in his lectures.
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if and only if:

a

b

T1 c

P

M

X

Y

=

a

b

T2 c

P

M

X

Y

(2.14)

for all finite sets X, Y , general systems c, controlled preparations P and measure-
ments M.

This means that two processes are operationally equivalent if there is no possible
experiment that could distinguish them.

As a sanity check, it is quite straightforward to see that if we focus on processes with
classical inputs and outputs, then two stochastic maps are operationally equivalent
if and only if they are equal.

An important property of this equivalence relation, is that it is compatible with the
various structures that we care about. In other words:

Theorem 2.2.2. Operational equivalence, ∼, is a congruence relation.

Proof sketch. There are two key things to prove here. Firstly, that ∼ is preserved
by composition, and secondly, that ∼ is preserved by convex combinations.

***TO DO***

The key benefit of this, is that it allows us to quotient P with respect to ∼, and that
the mathematical object that we get out of this quotienting will inherit a bunch of
nice properties from P. In particular, it will be a process theory with Stoch as a
full subtheory that allows us to take convex combinations of processes.

Let’s try to make all of that a bit more concrete. To start with, what do I mean by
quotienting? Well, we’re going to try to define a new process theory P/ ∼ in which
the processes correspond to equivalence classes of processes in P. Let us denote the
equivalence class of processes that are operationally equivalent to T as T̃, this means
that the processes in P/ ∼ can be diagrammatically denoted by:

a

b

T̃ . (2.15)

Note that as for stochastic processes we have that equality and operational equiva-
lence are the same, then quotienting leaves the subtheory Stoch invariant, and so
we will write S rather than S̃ for the processes in this subtheory.
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Now, having defined the processes in our quotiented theory, we need to define how
they compose. Well one way to do this is simply to pick some representative element
from each equivalence class, compose those within P and then to find the equivalence
class of the composite process. However, in order for this to be well defined it had
better be the case that this is independent of the choice of representative elements.
Luckily for us this is indeed the case, this is part of what we proved in order to
demonstrate that ∼ was a congruence relation!

We also want to understand the convex structure of the quotiented theory. In
particular, we want to show that we again have the two equivalent perspectives,
we can either talk directly about convex combinations of equivalence classes, or, we
can add a classical control system and a probability distribution over the control
variable, that is

∑
i∈I

pi

a

b

T̃i =

a

b

T̃

p
I

. (2.16)

An important feature that be expressed, is that in GPTs it is assumed that:

Principle 3. All effects for a given system are operationally equivalent, that is,
ways to discard a system only vary in their contexts.

This immediately implies that:

Proposition 2.2.3. P/∼ is a causal process theory.

This description of generalised probabilistic theories in terms of equivalence classes,
is a mathematically elegant way to go about things, but it isn’t really clear how to
compute anything.

2.3 Step 3: linear representation

In order to get to a formalism that is more amenable to actually doing calculations,
we want to find a concrete representation of our process theory in terms of real
vectors. This is generically possible, however, due to lack of time we’re going to
focus only on the states and measurements for a single system, that is, on preapre-
measure scenarios. Moreover, we will make the simplifying assumption, that all of
the convex sets that we abstractly obtained by quotienting are finite dimensional.
This can be motivated by the following principle:

Principle 4. A finite set of experiments suffices for characterising operational equiv-
alence, i.e., for process tomography.

This means that if two processes are not operationally equivalent to one another,
then this will be revealed by the statistics produced by a particular finite set of
experiments. That is, we don’t need to test all possible experiments, as we have in
the definition of operational equivalence).
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This kind of finite tomography works well enough for finite dimensional quantum
systems but fails when we get into the realms of infinite dimensional systems. This
principle therefore tells us that we are focusing on generalised theories that are finite
in a similar sense to the study of finite dimensional quantum theory. Whether or not
we believe that finiteness is appropriate for fundamental physics, it is undoubtedly
true that we have managed to understand a great deal about quantum theory by
focusing on the finite dimensional case. It therefore seems sensible to start off con-
sidering finite dimensional generalised probabilistic theories before we start worrying
about the technicalities of infinite dimensional systems.

Let us start by considering the geometry of states. We have already seen that for
Stoch that the states for X form a simplex where the vertices correspond to delta-
function distributions, and so can be labeled by x ∈ X. There is a key feature of
the simplex which is generic to all GPTs which is that this convex set is bounded.
Let us try to now to give some intuition for this property.

For some GPT system a let us denote the convex set of states as Ωa, that is

Ωa :=

 P̃

a
 , (2.17)

and we will assume (so that I can actually draw it on the page) that this convex set
is 2D, for example:

, (2.18)

where the first of these is a three-vertex simplex so corresponds to a state space in
Stoch. Convexity of these sets means that if I take any two points in these sets,
and draw a line-segment between them, then this is contained within the set, for
example,

. (2.19)

Now, convexity alone does not rule out the possibility of sets such as

· · · . (2.20)

This is an unbounded set as there is a direction that ‘goes to infinity’. However,
such convex sets are ruled out as they contain points which cannot be distinguished
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by any measurement, and so should have been identified when we quotiented, for
example, in the above picture the two points:

· · · (2.21)

cannot be distinguished by any measurement.

We know that the set of measurements with a particular outcome set X, form a
convex set,

MX :=


a

X

M̃

 , (2.22)

and we could characterise the geometry of each of these sets. However, we will
instead focus on a closely related geometry which is the geometry of effects. The
reason for this is that effects are often taken as part of the fundamental structure of
a GPT so it is important to gain some familiarity with them.

Essentially, if we want to talk about particular outcomes of measurements rather
than the measurement as a whole, then we start talking about effects.

Lets think just about Stoch for the moment. We have considered states as proba-
bility distributions

p
X

: X → [0, 1] :: x 7→ p(x) s.t.
∑
x∈X

p(x) = 1. (2.23)

However, suppose I am interested in a particular x ∈ X, and I want to have some
diagrammatic representation of p(x), then, as things stand this is not possible. An
easy way to see this is that typically p(x) 6= 1 and so if we have p(x) as a scalar in
our theory then we are necessarily no longer in a causal theory. Nonetheless, let us
introduce a diagrammatic element that does just this:

x

X
:: p

X
7→

x

p
X = p(x), (2.24)

which we denote as an effect with white text on a black background to highlight the
fact that this is not a discard-preserving process.

The issue with adding in this new effect, is that we still want to have a process theory
after adding this effect, and so we need to worry about all of the processes that we
can now construct using this new effect. Well, the first thing to observe is that this
gives new states in our theory. That is, noting that p(x) can be an arbitrary value
s in [0, 1], then we can obtain any state:

s p
X
. (2.25)
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Geometrically what this gives us is an embedding of the simplex of probability
distributions into a real vector space of one dimension higher, that is, into the
vector space RX ,

7→ (2.26)

and the set of states now correspond to arbitrary vectors between the zero vector and
the simplex of probability distributions. These can be thought of as subnormalised
distributions, i.e., those for which

∑
x p(x) ≤ 1.

Similarly, we can create a bunch more effects by pre-composing these new effects
with stochastic maps:

X

S

x

X . (2.27)

Geometrically these can be thought of as dual-vectors in RX∗, that is, as linear
functionals on RX . Using the Riesz representation theorem, however, we can always
represent linear functionals on RX as vectors in RX and compute the probabilities
via the dot-product. Pictorially, we can therefore draw these as:

, (2.28)

where the black dot in the upper right corresponds to the discarding effect. These
are often known as response functions for X.

Adding in these extra processes also then feeds through to the GPTs. For example
we now obtain subnormalised states such as:

s
P̃

a

, (2.29)

which geometrically again gives us an embedding of Ωa into a vector space, which we
will denote as Va, of one dimension higher and then taking all convex combinations
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with the zero-vector, e.g.:

7→ . (2.30)

More interestingly, we also get a bunch more effects for the GPT, defined by

Ea :=

 ã
M

x

X

 . (2.31)

These are very useful mathematical objects as they allow us to compute the proba-
bility of particular outcomes of the measurements. For example, if we compose the
effect

ã
M

x

X (2.32)

with some state P̃, then this will tell us the probability that we obtain outcome
x ∈ X when measurement M̃ is performed on the state. That is,

P̃

ã
M

x

X = Prob(x|P, M). (2.33)

Like with the response functions that we created in Stoch, these can be thought of
as linear functionals on Va and so living in the dual vector space V ∗a . Often, however,
we will introduce some (typically arbitrary) inner product on Va and use the Riesz
representation theorem to allow us to represent these effects in Va as well.

While the geometry of states is quite straightforward (either some arbitrary convex
bounded set in the case of normalised states, or the embedding of this into one
dimension higher and taking convex combinations with the zero-vector in the case
of subnormalised states) the geometry of effects is much more interesting.
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For a given measurement, M, we obtain a zonotope of effects:

ZM :=

 ã
M

r

X =
∑
x∈X

rx

ã
M

x

X

 ⊆ Ea, (2.34)

where rx ∈ [0, 1]. Note that r is an arbitrary response function here, and so there
is no demand that

∑
x rx = 1. Note now, that each of these ZM share (at least)

two common elements, that is, if we set rx = 0 for all x, then regardless of which
measurement we consider we end up with the zero-effect, whilst if we set rx = 1
for all x, then regardless of which measurement we consider we end up with the
discard-effect.

Now, it can be shown that an arbitrary effect can be written as a convex combination
of effects lying in these zonotopes, that is,

Ea = ConvHull

[⋃
M

ZM

]
. (2.35)

That is, we can think of the effect space as a bunch of zonotopes that are glued
together at two points and then we take the convex hull of these. To give a simple
pictorial example with just a pair of binary measurements, we have something like:

7→ 7→,

, (2.36)

where in the first step we take the union of the two zonotopes gluing them together
by the zero and discarding effects, and in the second step we take the convex hull of
these.

2.4 Example: quantum theory

We will now illustrate the generalised probabilistic theory formalism by casting
quantum theory in this language. We will call the quantum GPT Quant. Our
focus here again will be on preparations and measurements.

Typically we represent quantum systems by (finite dimensional) Hilbert spaces, and
represent pure states as vectors in the Hilbert space or pure states as Hermitian
operators on the Hilbert space. However, we’ve now seen that generalised proba-
bilistic theories represent everything in terms of real vectors, so in order to see how
to represent quantum theory as a GPT we need to see how to represent quantum
theory with only real numbers.
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It sometimes surprises people to hear that this is possible, but it is actually very
straightforward – in fact, it is just a generalisation of the Bloch-ball representation
of a qubit! In particular, one can note that the space of Hermitian operators on
a Hilbert space defines a real vector space. This is because given some Hermitian
operator h and a complex number α, then αh is Hermitian if and only if α = α∗,
that is, if α is real. Hence, we can only take real linear combinations of Hermitian
operators,

∑
i∈I rihi where ri ∈ R, and so this forms a real vector space. Let’s

denote this real vector space as H. It is clear that quantum states form a convex
set within this real vector space, as

∑
i piρi is always a valid density matrix.

In the case of the qubit, the geometry of normalised states, i.e., those satisfying
tr(ρ) = 1, is given by:

(2.37)

which is a 3D convex state space, this is then embedded in a 4D real vector space
such that we can represent subnormalised states as well. A particular 3D slice of
this is given by:

. (2.38)

This tells us that we can represent quantum states in terms of real vectors, but what
about quantum effects?

Well, typically the probabilities of outcomes of measurements are computed using
the Born rule:

Prob(k|M,ρ) = tr(Mkρ) (2.39)

where M = {Mk} is a POVM where k labels the outcome of the measurement and
the Mk are positive Hermitian operators which sum to identity,

∑
kMk = 1.

To see that this is the same as we have in the GPT formalism, first note that tr(Mk )
is a linear functional on the space of vector space of Hermitian operators, and so lives
in the dual vector space – these are our effects for the quantum GPT. We can then
see that tr( ) defines an inner product on the vector space of Hermitian operators,
and so the POVM elements Mk are simply the Riesz representation of the quantum
effects! Geometrically, a 3D slice through the vector space with these effects for a
qubit can be drawn as:

. (2.40)

We can see this as being of the form:

Ea = ConvHull

[⋃
M

ZM

]
. (2.41)

by noting that the number of different binary measurements for a qubit is infinite.



36 Chapter 2. General probabilistic theories

In particular, we get one zonotope per point on the surface of the Bloch sphere. The
effect space is then the union of all of these!

This kind of representation can also be extended to quantum transformations, we
just need to note that CPTP (or CPTNI) maps between quantum systems can be
viewed as linear maps between the real vector spaces of Hermitian operators. The
details of this however go beyond what we have time for here.

Understanding quantum processes in this language gives some interesting insight
into these mathematical objects that we often take for granted. For example, what
should we now say if we are asked “what is a density matrix”? Well, from the
GPT perspective a density matrix is a mathematical way to represent an opera-
tional equivalence class of preparations for the system. Similarly, CPTP maps are
a mathematical way to represent operational equivalence classes of transformations.
Finally, POVM elements are then a mathematical tool for computing probabilities
of obtaining particular outcomes when performing a measurement on a quantum
system.

2.5 Summary

In this lecture you’ve seen how a particular class of process theories correspond to
the well studied formalism of GPTs. We saw that there were three steps involved in
this, the first was to restrict our attention to process theories that have a well defined
classical interface, the second was to identify processes that differed only by context,
and the third was to give a concrete linear representation of the involved processes.
We then briefly saw how the geometry of quantum states, effects and transformations
looks like from this perspective. In particular, this highlights the fact that our
standard quantum processes such as density matrices, and CPTP maps, are in fact
representatives of operational equivalence classes of processes. We have not yet,
however, touched on how Quant and Stoch interact with one another (even though
this interact was central to defining GPTs) the reason for this is because we will
discuss this in depth in the next lecture, albeit from a complementary perspective.



Lecture 3

The landscape of physical
theories

In the first two lectures we saw how to describe a particular theory within some
framework for describing physical theories. In particular in the first lecture we
talked about a very general framework known as process theories, and in the second
we focused on a special case of these known as generalised probabilistic theories.
We can consider either framework as describing a ‘landscape’ of hypothetical phys-
ical theories, with quantum and classical theories as particular points within this
landscape. Moreover, we know that there is some structure to this landscape, for
example, we know that there is a subset of the theories within the landscape of
process theories which are generalised probabilistic theories. More interestingly, we
have also started to see relationships between different process theories. For ex-
ample, we know that Stoch is a subtheory of any other GPT, and we know that
quotienting my operational equivalences maps one process theory to another.

Process Theories

GPTs

Stoch

Quant

Theories with classical interface

G⊆

∼

(3.1)

In this final lecture I want to flesh out this picture to some extent. I want to formalise
the structure of the landscape of physical theories. Ultimately I will use this to
understand the emergence of one physical theory from another via a generalisation
of the notion of decoherence.

37
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3.1 Diagram preserving maps

The key tool that we will use to explore the landscape of process theories is the
notion of a diagram preserving map. These are a flexible tool which formalise the
relationships discussed above and much more. They map the systems and processes
of one process theory, P, to the systems and processes of another, P ′, in a way that
commutes with forming diagrams. We denote these as ξ : P → P ′ for reasons that
will soon become apparent.

These map systems a ∈ P to systems ξa ∈ P ′ and processes as

P

c d

a b

∈ P 7→ P
c d

a b ξ

ξa ξb

ξc ξd

∈ P ′ (3.2)

which commutes with forming diagrams, for example:

P
c

d

a b
ξa ξb

ξc

P′
e g

f

ξ

ξf

ξe ξg

=

P
c d

a b ξ

ξa ξb

ξc

ξd

P′
e g

d f ξ

ξf

ξe ξg

. (3.3)

This means that we can always merge these shaded boxes together or split them up
around individual processes in a diagram.

***PRESERVATION OF IDENTITY AND SWAP***

It turns out that we have already encountered a couple of diagram preserving maps
in this course already, we just didn’t formalise them as such.

The first instance we encountered comes from the fact that whenever we have a
subtheory P ⊆ P ′ we can define a diagram preserving inclusion map ι : P → P ′.
So, for example, when we said that Stoch is a subtheory in any GPT G then we
can define the inclusion map ι : Stoch→ G.

The second instance we encountered comes from the fact that whenever we have a
congruence relation ∼ for a process theory P, we can define a diagram preserving
quotienting map ∼ : P → P/∼1. So, for example, when we said that the equiv-
alence relation defined by operational equivalence was a congruence relation, then
this means that going to the theory of equivalence classes P/∼ can be seen as an
application of the diagram preserving map ∼.

1There is a bit of overloaded notation here, in that we are using ∼ both for the congruence
relation itself, but also the diagram preserving quotienting map, hopefully it is always clear from
context which way this symbol is being used.
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In the next section we will see a more interesting application of this formalism.

3.2 Decoherence

In quantum theory, the leading explanation for the emergence of the classical world
around us comes from the notion of decoherence. At the most simplified level, we
can think of decoherence for some d-dimensional quantum system as a CPTP map D
defined by D(ρ) =

∑d
i=1 |i〉 〈i| ρ |i〉 〈i|, this maps general density matrices ρ to those

that are diagonal in some orthonormal basis described by the |i〉’s. Such density
matrices are in one-to-one correspondence with probability distributions over the
finite set {1, ..., d}, and so, intuitively, it seems that decoherence is leaving us with
something that is essentially classical.

Now, there are many things to explain about decoherence as an explanation for
emergent classicality, for example: what picks out the particular basis {|i〉} and in
what physical situations does D actually capture the dynamics of what is going on?
This is a big field of study and I am not even going to attempt to do justice to
it here. Instead, what I’m going to do is show how we can capture the essential
features of decoherence in the language of process theories.

There are two key things that I hope to achieve by doing this. On the one hand, I
hope to see not just how classical states (i.e., probability distributions) emerge from
quantum states under decoherence, but how the entirety of classical theory emerge
from quantum theory. On the other hand, I also want to go beyond just looking
at the quantum to classical transition, but look at transitions between arbitrary
theories! Of particular interest here, will be in the next section when we ask the
question, is it possible that there is some beyond-quantum theory that decoheres to
quantum theory?

Let’s go back to the quantum decoherence map D. In particular, we want to ask what
properties of this map can be captured in an elegant diagrammatic form. We know
that this is a CPTP map, so is automatically discard-preserving. More interestingly,
we know that this is an idempotent map, that is, D(D(ρ)) = D(ρ) for all states ρ.

If we want to think about the image of this map as being the set of classical states,
then idempotence tells us that i) all states are mapped to classical states by D, and
ii) classical states are left invariant by D.

This motivates the following definition:

Definition 3.2.1 (Decoherence processes). In any process theory P with discarding,
a process

D

a

a

(3.4)

is said to be a decoherence process if and only if it is discard-preserving and idem-
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potent, i.e.,

D

a

a

=
a

and
D

a

a
D

a

= D

a

a

. (3.5)

If we turn back to quantum theory for a second, then it will probably be clear to you
that there are idempotent and discard-preserving processes that are not simply D
with respect to some basis, to give a trivial example, we have the identity process!
We also have processes that map general density matrices into a block-diagonal
(rather than strictly diagonal) form, and a bit more too. We’ll return to see what
this added generality buys us later in the lecture.

We can then talk about the decohered states as those of the form:

a
D

P

a

(3.6)

and the decohered measurements as those of the form:

a
D

M

a

X

(3.7)

and more generally decohered transformations for the system as those of the form:

a
D

T

a

a
D

a

. (3.8)

In the case of the quantum decoherence map D, we find that this gives us states,
transformations, and measurements that are isomorphic to classical probability dis-
tributions, stochastic dynamics, and classical ‘measurements’2, respectively. Hence,
we see that decoherence leads to much more than just the emergence of classical
states!

The idea now, is that we want to construct a new theory in which decohered systems
live. However, as mentioned before, there are often many different decoherence
processes for any given system, and so how do we pick which ones to use? Well,

2I.e., stochastic maps from the classical system to the outcome set.
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the simple answer is don’t! To start with at least we’re going to construct a new
theory in which arbitrarily decohered systems live. This is actually a well studied
construction in category theory known as the Karoubi envelope3, so we don’t need
to go about reinventing the wheel in this case!

Definition 3.2.2 (Karoubi envelope). Given a process theory with discarding P
we can define a new process theory K[P] in which systems correspond to decoher-
ence processes in P and in which processes correspond to decohered processes in P.
Composition of processes in K[P] is then given by simply composing the decohered
processes in P.

Let us start with some very explicit notation for this theory, and later we can
introduce a shorthand for this. To begin we will denote systems in K[P] with green
wires labelled with an idempotent process in P, that is, as:

D

a

a . (3.9)

We then denote proesses as gray shaded boxes labelled by appropriately decohered
processes in P, that is, as:

D

a

D′

T

b

D

a

a

D′

b

b

. (3.10)

Composition of these processes in K[P] is then given by composing the associated

3Ok, so there is actually a subtle difference which I’m glossing over here, is that the Karoubi
envelope strictly considers all idempotents, whilst here I’m only talking about discard-preserving
ones. This doesn’t really change anythign though.
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decohered processes in P, for example:

D′′

c

c

D

a

a

D′

b

b
D′′′

b

b

G

D′
b

D′′′
b

D′′

c
D

a

D′

b

b
D

a

a

D′′′′

a

a

F

D′′
c

D′′′′
a

D′

b
D

a

=

D

a

a

D′

b

b
D′′′

b

b

G

D′
b

D′′′
b

D′′

c

D

a

D′

b

b
D

a

a

D′′′′

a

a

F

D′′′′
a

D′

b
D

a

c
. (3.11)

It is interesting to consider the identity processes in K[P] as we have that:

D

a

a =

D

a

a

D

a

a

D

a

a

, (3.12)

as the identity transformation for a is not a decohered process (relative to D) and so
the idempotent D (which is a decohered process) acts as the identity instead.

As mentioned above, this notation is quite heavy and this use of “nested diagrams”
takes up far too much space on the page, so we tend to use a simplified notation. It
is worth always having this more explicit notation in mind however, as it helps to
avoid mistakes. In particular, we can label wires in K[P] by Da without losing any
important information. We can also leave the fact that the label on the box is a
decohered process in P implicit. Then, for example, we can write a process in K[P]
as:

Da

D′b

T , (3.13)
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where we now need to make sure that T is indeed a decohered process in P with
input a and output b, such that it satisfies T = Db ◦ T ◦ Da. The reason being that
this is no longer explicitly enforced by the notation.

Now, if we consider the subtheory of K[P] defined by restricting to only the systems
labelled by the identities in P, that is, those of the form:

a

a , (3.14)

then it is hopefully clear that the theory we get is basically the same s P. For
example, the set of processes between this kind of systems is always the full set of
processes in P, as decohering processes by the identity does nothing. However, how
can we formally capture this intuition? The answer is diagram presrving maps!

What we can do is define a diagram preserving map from ι : P → K[P] , defined
by:

a

T

b

ι

a

a

b

b

:=
a

T

b

a

a

b

b

(3.15)

for an arbitrary process T in P. It is straightforward to verify that this is indeed
diagram preserving, it follows immediately from the definition of composition in
K[P] and the above definition of ι. There are a couple of important properties of ι
which capture this intuition that P is the kind of subtheory I described above.

Firstly, it is full (i.e., surjective on processes). This means that any process in K[P]
between systems 1a, is in the image of ι.

Secondly, it is faithful (i.e., injective on processes). This means that if two processes
in P are distinct, then they are distinct when ι is applied to them.

These conditions together capture the intuitive idea that if we restrict K[P] to
particular systems (namely 1a) that we obtain the theory P. If ι were not full
then we would not simply be restricting to particular systems, but also to particular
processes for those systems, whilst if ι were not faithful then this subtheory would
not be capturing all of the information about P.

While this is hopefully a good example to get you some intuition for this definition, it
is not really a particularly exciting example, we’ve done some elaborate construction
only to get back to the thing we started with! What is much more interesting, is
whether Stoch is a subtheory of K[P] in the same sense. That is:

Definition 3.2.3 (Decoherence). We say that a process theory P can decohere (to
classical theory) if and only if there exists a full and faithful diagram preserving map
ι : Stoch→ K[P].
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Let us now consider quantum theory, and in particular, let us start by constructing
K[Quant]. One can show that

Proposition 3.2.4. There is a full and faithful diagram presrving map ι : Stoch→
K[Quant], which, in particular, maps a stochastic system X to a system in K[quant]
which is a quantum decoherence map D for a |X|-dimensional quantum system.

This means, in the formal sense I defined above, that quantum theory decoheres to
classical theory. Now, the formal proof of this is all a bit beyond the scope of this
course, but there are some nice things that we can understand given this result.

The above result tells us that K[Quant] is a theory in which we have both Stoch
and Quant as full subtheories. It is therefore interesting to ask about the sorts of
interactions that we get between them.

The key result that we will use is the following:

Proposition 3.2.5. Any decoherence process in P splits in K[P].

Firstly, what does it mean for a decoherence process to split? Suppose we have a
decoherence process D then it splits if we can find a system s and processes e and r

such that:

D

a

a

=

r
a

e

s

a

and

s

=

e

s

r

a

s

. (3.16)

Intuitively, we think of s as the subspace of a which D is mapping everything into.
r is then mapping everything into this subspace, and then e is mapping this sub-
space back into the full space. The second equation then tells us that if we map
the subspace into the full space, and then back into the subspace, that this leaves
everything in the subspace invariant.

Note that the systems that D can split through are all isomorphic to one another,
and that we can in fact derive idempotence of D from these two equations!

Now, when we say that any decoherence process in P splits in K[P] what we really
mean is that:

a
D

a

a

ι

a

a

a

=
a

D

a

a

a

a

a

(3.17)

splits in K[P]. In particular, it splits through the system labeled by itself! That is,
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we can write:

a

D

a

a

a

a

a

=

a

a

a

a

a
D

a

a
e

a

a
r

a

and
a
D

a

=
a

a

a
D

a

a
r

a

a
D

a

a
e

a

(3.18)

In order to prove this we just need to find suitable processes e and r, it turns out
that each of these can be taken to be D itself, that is, it is straightforward to verify
that the following equalities are valid:

a

D

a

a

a

a

a

=

a

a

a

a

a
D

a

a
D

a

a
D

a

and
a
D

a

=
a

a

a
D

a

a
D

a

a
D

a

a
D

a

. (3.19)

The tricky bit in showing this is remembering how the identities in K[P] were defined
in Eq. (3.12).

Let us now consider what this means for K[Quant]. Well, we have already seen that
if we consider decoherence channels D that these give us Stoch as a full subtheory.
And that if we consider identity channels 1 then we get Quant as a full subtheory.
If we now consider the splitting of D, then what this is giving us is a perfect encoding
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and decoding of a classical system into a quantum system. In other words:

H
H

D

D

H

H

H

H

(3.20)

is a classically controlled state preparation and

H
H

D

D

H

H

H

H

(3.21)

is a measurement of the quantum system which perfectly distinguishes the set of
prepared states. These encodings are also minimal in the sense that the dimension
of H matches the number of classical states being encoded. We then know from
quantum theory that this must be preparing an orthonormal basis of quantum states
|i〉 〈i| and that the measurement is measuring this orthonormal basis.

We therefore have seen that not only does K[Quant] contain both Quant and Stoch
as subtheories, but that they interact in a non-trivial way as well. One can go
further and show that in fact all logically consistent ways that these could interact
is described in K[Quant], but we will focus on two results that are relevant for GPTs.

Proposition 3.2.6. K[Quant] contains all classically controlled quantum processes.

Proof sketch. ***TO DO***

Proposition 3.2.7. K[Quant] has sufficient measurements for quantum process to-
mography.

Proof sketch. ***TO DO***

What this tells us is that if we restrict to the processes in K[Quant] belonging to
either the classical or quantum subtheory (or composites thereof), then we have a
GPT description of quantum theory with a classical interface!

What this means is that we do not need to treat the classical interface as part of
the fundamental description of nature, that is, we do not need to imagine that there
are systems floating around that are intrinsically classical. Instead, we can view the
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systems in the classical interface as being emergent from some deeper description of
nature.

What is interesting is that this is not true for all GPTs! There are some GPTs
for which there is no way to see the classical interface as emergent from the other
systems. If such a theory were to be a real theory of physics it would therefore
require that one posits that there are systems in the world that are fundamentally
classical. The idea that classical systems should be emergent rather than part of
fundamental physics seems quite a natural one, it is therefore interesting to ask what
features must a GPT have in order to allow for emergent classicality.

3.3 Hyperdecoherence

We have seen the formal process-theoretic sense in which classical theory can emerge
from quantum theory. This offers at least a partial explanation for why we don’t see
quantum phenomena in our daily lives, and why for so many years classical theory
adequately explained everything we saw in experiments.

It is natural to speculate that there might be some deeper theory of nature that will
one day replace quantum theory as our best theory of nature, just as classical theory
was replaced by quantum theory. However, if there is such a beyond-quantum theory,
then it should offer some sort of explanation for why we haven’t yet seen it in our
experiments. One candidate explanation could be by some mechanism analogous to
decoherence. We call this mechanism hyperdecoherence.

One of the great things about the process-theoretic definition of decoherence, is that
it is immediately obvious how to generalise it to talk about this sort of situation.
That is, we can define:

Definition 3.3.1 (Hyperdecoherence). We say that a process theory P can hyper-
decohere (to quantum theory) if and only if there exists a full and faithful diagram
preserving map ι : Quant→ K[P].

There is not a huge amount of research on hyperdecoherence as of yet, however,
there are some interesting preliminary works.

3.3.1 No-go theorem

For example, one can show that

Theorem 3.3.2. Any GPT which hyperdecoheres must either violate the principle
of purification, and/or causality.

We have talked about causality quite extensively already, however this is the first
time that I have mentioned purification. Essentially, it is the GPT analogue of
quantum purifications, this has two parts. Firstly, the idea that any mixed state
can be understood as being a pure state (the purification) on a larger system with
part of the larger system discarded. Secondly, that such purifications are essentially
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unique, that is, can be mapped to one another by reversible transformations on the
purifying system.

This result is interesting because it shows how we can still manage to prove results
about beyond-quantum theories, even without having any experimental evidence of
what they will be like. That is, simply consistency conditions with what we observe
in our current experiments can still teach us a lot!

3.3.2 Density hypercubes

One can also show that if we slightly modify the notion of hyperdecoherence, then
it is possible to explicitly construct a beyond-quantum theory. In particular, if we
remove the requirement that decoherence maps are discard-preserving, then we can
find a theory that hyperdecoheres to quantum theory.

This is the theory known as density hypercubes, which, uses rank-4 tensors to rep-
resent states (compared to quantum theory that uses rank-2 tensors, i.e., density
matrixes, and an earlier theory known as density-cubes which uses rank-3 tensors).

3.4 Summary

In this lecture I have started to flesh out the structure of the landscape of physical
theories. Whilst the mathematics behind this has existed since the 60s it is only very
recently that this structure has started to be studied in the context of generalised
physical theories. Nonetheless, I hope to have given you a flavour of the utility of
these tools. We’ve seen how they can be used to see the emergence of classical theory
(as a whole) from quantum theory, and how this can easily be generalised to start
considering , and proving results about, theories beyond quantum too!

3.5 Resource theories

This topic really needs at least another lecture to do it justice, but I wanted to
flag up a couple of interesting points here and to point you to references for further
reading.

The first is that there is an elegant formulation of the idea of a resource theory
in the language of process theories. Resource theories provide a way to quantify
and reason about things (e.g., quantum phenomena) that we deem to be useful for
various tasks. For example, resource theories of entanglement, nonlocality, and so
on, have all been developed.

The basic idea behind the process-theoretic formulation of resource theories, is that
if we have a process theory that describes what is possible in the world, then in
order to understand resources we partition these processes into two. We have the
processes that we can implement (essentially) for free and those that we cannot.
We can then order the resourcefulness of resources, by saying that one resource, r1,
is more resourceful than another, r2, if we freely transform r1 into r2. The reason
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being that anything that we achieve using r2 could equally well be achieved by r1
simply by first transforming r1 into r2.

Anyway, the details of how all of this formally works are not important for now,
what I want to highlight is the fact that resource theories can be expressed very
generally in the language of process theories. We have also seen how decoherence
can be very generally discussed in the language of process theories. The conjunction
of these two leads us to being able to understand resource theories of coherence in
this very general setting as well!
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