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Universality & Undecidability

Today, at approximately 11:15 Zürich time, is the summer solstice

in computation
elsewhere Later

Now



Universality & Undecidability
in computation



Turing machines
‣A Turing machine is a model of computation.

Head

Tape

Action of the head on the tape

Ultimately, the head accepts or rejects (or gets stuck in a loop, i.e. does not halt) the input written on the tape. 
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Turing machines
‣Head

‣ In a state from a finite set of states, q ∈ Γ

‣A start state, an accept state, and a rejecting state 

‣Of unbounded length

‣Tape

‣With symbols from a finite alphabet, , and a blank symbol r ∈ Σ ⊔

‣The program is this finite set of transition rules.

‣At each step, the head reads a cell of the tape, overwrites it, changes its state, and 
moves left or right:

 where (q, r) → (p, s, M) M ∈ {Left, Right}

 for  in a finite set.(qi, ri) → (pi, si, Mi) i

A finite alphabet is a finite number of symbols, 
such as  or  or {0,1} {a, b, c} { ⋄ }



Turing machines

‣Very robust definition — the following don’t change their power

‣Adding more tapes, making the tape infinite instead of semiinfinite, a unary tape alphabet,                                                having 
access to another Turing machine, having nondeterministic rules…

‣Turing machines are one of several models of computation

‣  calculus, partial recursive functions, tag systems…λ

‣ Intuitively, a Turing machine is what a human computer with finite memory and a notebook with a symbol per page can do.

‣ In practice very cumbersome to write algorithms for Turing machines

Church-Turing thesis

A function on the natural numbers can be calculated by an effective method if and only if 

it is computable by a Turing machine. 



Universal Turing machines

‣ It seems that for every function one wants to compute, one needs to build a new machine. This is not the case! 

‣There is a single program that can run any computation - the universal Turing machine.

‣The universal Turing machine has fixed transition rules, and it is fed

[ description of the Turing machine to be simulated ] # [ input ] 

‣This is a reprogrammable machine: 

‣Hardware: the program of the universal Turing machine

‣Software: the description of the algorithm which is part of the tape.

x T (x)T

d(T, x) U T (x)



‣Encode transition rule  as the string (q, r) → (p, s, M) 10p10r10q10s10M

Universal Turing machines
‣Let’s encode a program as data

this string encodes a program

Unary encoding of the naturals: 
n ↦ ⋄ ⋄ … ⋄

n

= ⋄n

‣Encode multiple transition rules as as 10p110r110q110s110M1 1 10p210r210q210s210M2 1 … 1 10pn10rn10qn10sn10Mn =: d(T )

‣Consider Turing machine , and fix the head alphabet to be unaryT

‣ Identify Left with 1 and Right with 2.



Universal Turing machines

‣ It has three tapes

‣The top tape contains d(T )

‣The middle tape initially contains  and later holds the simulated contents of T’s tapex

‣The bottom tape contains the current state of T and the current position of T’s head

‣U simulates T on input x one step at a time, shuttling back and forth between  and the simulated contents of T’s tape.d(T )

‣ In each step,  updates ’s state and simulated tape contents as dictated by ’s transition function.U T T

‣ If ever  halts and accepts or halts and rejects,  does the same. T U

‣On input , the universal Turing machine  acts as follows: d(T )#x U



Universal Turing machines

‣ If you build a universal Turing machine, you can run any algorithm.



Universal Turing machines
‣Conceptually, programs seemed to be at a higher hierarchical level than data

‣This distinction is only superficial: programs can be encoded as data, which tell the machine which program to run.

‣Strange loop, or tangled hierarchy

The program

The data The data

The program



Universal Turing machines
‣Strange loop, or tangled hierarchy



Machines and their languages
‣A formal language is  where  is a finite alphabet.L ⊆ Σ* Σ   where      timesΣ* = ⋃

n≥0

Σn Σn = Σ × … × Σ n

‣A language  is recursively enumerable if it is accepted by a Turing machine.L

‣A Turing machine  accepts  if, for every ,  accepts .M L x ∈ L M x

‣ If, additionally, for every ,  rejects , then  decides .x ∉ L M x M L

co-recursively 
enumerable

recursively 
enumerable

Decidable
‣A language  is decidable if it is decided by a Turing machine.  L

‣The set of strings accepted by Turing machine  is .M L(M)

‣That decidable  recursively enumerable was shown by Turing.≠

‣The polynomially bounded version of this problem is the famous  conjecture.P ≠ NP



Machines and their languages

‣A language accepted by a Turing machine has a grammar. 

Machine M

Program (finite set of transition rules)

Language L(M)

Grammar (finite set of production rules)

They are a mould that can be applied an unbounded number of times

‣A grammar is a finite set of production rules.



all other languages

Weaker machines and their languages

recursively enumerableTuring machine

context-sensitive

context-free

regular

Linear bounded automaton

Pushdown automaton

Finite state automaton

no universality

Machines Languages

Without a grammarNot accepted by any physically realisable 
model of computation

Essentially every language! 



‣This function expresses an attribute of the natural numbers, i.e. a property that a natural number can have:

 f(n) = {1 if n has that property
0 if it doesn't

Uncomputable functions

E.g. being an odd number, or being a prime.

‣Every such  can be identified with its extension, f {n ∈ ℕ ∣ f(n) = 1}  ∈ ℘(ℕ)

‣Thus, there are as many attributes as elements of the power set, .|℘(ℕ) | = 2|ℕ|

‣By Cantor’s Theorem |ℕ | < |℘(ℕ) |

‣So essentially every such function is uncomputable, i.e. essentially every attribute has no grammar. 

‣A Turing machine computes a function f : ℕ → {0,1}

‣A Turing machine can be encoded as a finite string, hence the number of Turing machines is .|ℕ |

‣But the distribution of interesting functions / attributes is not uniform…

a.k.a. langauges without grammar



The halting problem

‣The halting problem: Given the code of a machine  and an input , will  halt on ? d(T ) x T x

‣Uncomputable, i.e. the language  is not decidableL = {d(T )#x ∣ T halts on x}

‣Assume it were computable, i.e. there’s a machine  that accepts every yes instance and rejects every no instance.M

‣Construct a new machine  which halts if  does not halt, and does not halt if  halts.P M M

‣Feed  to d(P)#d(P) P

‣  halts if and only if  does not halt on . P P P

‣So  cannot exist, so  cannot exist. P M

‣ It is proven by self-reference and negation.

‣ It is one of the many incarnations of the liar paradox.

‣An interesting, yet uncomputable problem.


