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GDLC & T. Cubitt, Simple universal models capture all classical spin physics, Science 351, 1180 (2016)

Simple spin model Complicated spin models
Universal



‣Toy models for complex systems

‣Used to model magnetism, a gas, artificial neural networks, in knot theory, in protein folding, in ecology, random 
language models, …

Classical spin models
‣The spin stands for any classical & discrete variable, and the Hamiltonian for any (family of) cost functions. 

‣Typically with a local structure.

‣The Ising model    where HG(s1, …, sn) = − ∑
(i,j)∈E

Ji,j sisj si ∈ {1, − 1}

‣Why are they so expressive? Perhaps because they are universal.



Universal spin models

E.g. the 2D Ising model with fields with inhomogeneous couplings and fields

{H(s1, …, sn) = ∑
(i,j)∈E

Ji,jsisj + ∑
i∈V

hisi ∣ Ji,j, hi ∈ ℚ and (V, E) is a 2D lattice with n nodes, for any n}

‣A spin system is a function from a given number of spins to energies. 

‣A spin model is a family of spin systems. 

= {Hα}α∈I



Universal spin models
‣A spin model  simulates a spin system  if for any threshold  there is an  such that, for energies below ,

‣The energies of  and  (up to a constant multiplicity), 

‣The states of a subset of spins of  (the physical spins) are in one-to-one correspondence with the states of , 

‣The partition functions coincide up to a constant factor and an error , and 

‣The description of  is polynomially larger than the description of .

{Hα} H′ Δ α ∈ I Δ
Hα H′ 

Hα H′ 

ZHα
= γZH′ 

+ O(exp(−Δ))

Hα H′ 

‣A spin model is universal if it can simulate any spin system.

 mimics the behavior of Hα H′ 

H′ Hα

Δ



Universal spin models

‣A spin model  is closed if for any  there exists a  so that  simulates .{Hα} α, β ∈ I γ ∈ I Hγ Hα + Hβ

‣The ground state energy problem (GSE) of a spin model  is the set of yes instances to the question

Given a  and a , does  have a spin configuration with energy below ?

{Hα}
α ∈ I K Hα K

‣A reduction from SAT to GSE is faithful if there is a map that, for YES instances, maps a witness of SAT to a witness of GSE. 

Theorem

The 2D Ising model with fields (with inhomogeneous couplings) is universal. 

Theorem

A spin model is universal if and only if 

‣ Its GSE admits a polynomial-time faithful reduction from SAT, and

‣ It is closed.



Universal spin models

‣Encode computation (of the characteristic function) in the ground state of the spin model.

‣Add using closure. 

‣ Is this exclusive to spin models? 

‣ Is this a veiled form of Turing-universality? 

‣ Is it some well-known structure in mathematics?

Theorem

A spin model is universal if and only if 

‣ Its GSE admits a polynomial-time faithful reduction from SAT, and

‣ It is closed.



Neural network

x → f(x)

Machine learning

Automaton

x T (x)T

Computer science

Object of study Spin model

Physics

Universal model d(T, x) U T (x)

Input x / Description of T Visible / Hidden units

Part of the input 
describing T

Distribution  
of weights and biases

Physical / Auxiliary spinsActual / auxiliary variables

Distribution  
of couplings strengthsDescription of model



Goal 
 
Understand the reach of 
Universality.



Goal 
 
Understand the reach of 
Universality & Undecidability.



Top-down

Bottom-up

‣A framework for universality 

‣Compare two examples

How? 

From universality to undecidability



‣A framework for universality 
conceptual



‣A framework for universality 
categorical



‣A conceptual framework for universality 
What does universal m

ean?



Guillermo Ferla via Unsplash

Universal:  
relative to the Universe.



Guillermo Ferla via Unsplash

Universal:  
relative to the Universe.
all-encompassing.



Given a collection  and a relation  that lands in ,  is universal if  for all .C R C u (u, c) ∈ R c ∈ C

Universal as ‘all-encompassing’

S. Stengele, T. Reinhart, T. Gonda & GDLC. Universality: Basic structure, manifestations and connections across disciplines, upcoming

THE BASIC STRUCTURE  



Universals in Computation

‣ Universal Turing machine

‣ Completeness in a complexity class

‣  is the collection of problems in the class 
‣  is a (poly-time) reduction
‣  is a complete problem

C
R
u

Instantiations of the basic structure

‣  is the collection of Turing machines
‣  is simulation
‣  is a universal Turing machine

C
R
u



Universals in Computation
Instantiations of the basic structure

‣ Universal gate set for quantum computation

‣  is the set unitaries of arbitrary size
‣  if for every  there is a sequence of gates of  which is  close to 
‣  is a universal gate set 

C
(u, c) ∈ R ϵ > 0 u ϵ c
u

‣ Universal gate set

‣  is the collection of Boolean functions
‣  is there exists a sequence of gates from  whose result equals 
‣  is the universal gate set. 

C
(u, c) ∈ R u c
u



Universals in Physics

‣ Universality classes of spin models

‣  is the collection of all Hamiltonians
‣  if  flows under renormalisation to 
‣  is the collection of fixed points 

C
(u, c) ∈ R c u
u

Instantiations of the basic structure

‣ Universal (quantum) spin models

‣  is the collection of (quantum) spin systems
‣  if  (quantum) simulation 
‣  is a (quantum) universal spin model

C
(u, c) ∈ R u c
u

GDLC & T. Cubitt. Simple universal spin models capture all classical physics, Science 351, 1180 (2016)
T. Cubitt, A. Montanaro, S. Piddock. Universal quantum Hamiltonians, PNAS 38, 9497 (2017)



Universals in Machine Learning

‣ Universality in feed-forward neural networks

‣  is the set of continuous functions 
‣  if for any  there is an element in  such that the function in the visible units of  is  close to 
‣  is the set of feed-forward neural networks with one hidden layer of unfixed size and weights 

C
(u, c) ∈ R ϵ > 0 u u ϵ c
u

‣ Universality in Restricted Boltzmann machines

‣  is the set of discrete probability distributions over a certain size
‣  is similar to above
‣  is the set of RBMs with unfixed weights and unfixed internal size

C
R
u

Instantiations of the basic structure



Universals in Mathematics

‣ Basis of a vector space

‣  is a vector space
‣  if there is a linear combination of elements of  which equals 
‣  is universal if it contains a basis

C
(u, c) ∈ R u c
u

‣ Extremal points of a convex set

‣  is a convex set
‣  if there is a convex combination of elements of  which equals  
‣  is universal if it contains the set of extremal points

C
(u, c) ∈ R u c
u

Instantiations of the basic structure



Universals in Mathematics
Instantiations of the basic structure

‣ Universal graph

‣  is the set of graphs of any size
‣  if  is a minor of 
‣  is a universal graph

C
(u, c) ∈ R c u
u

‣ Universal differential equation

‣  is the set of continuous functions
‣  if for any  there is a solution of  which is  close to .
‣  is a universal differential equation

C
(u, c) ∈ R ϵ > 0 u ϵ c
u



Universals in Linguistics

‣ Universal Grammar

‣  is the collection of grammars of all natural languages 
‣  if there is a choice of parameters of  after which it becomes 
‣  is the universal grammar.

C
(u, c) ∈ R u c
u

Instantiations of the basic structure



Universals in Philosophy

‣ The problem of universals

How can we assign the same attribute to different particulars? 

Metaphysical realists: shared attributes are due to their instantiation of the same universal.

Nominalists: there are no universals. 

‣  is the collection of all particulars sharing a given attribute
‣  if  is instantiated in 
‣  is the universal (living in another world)

C
(u, c) ∈ R u c
u

‣ The attribute “is non-self-instantiating” is problematic — undecidablity! 

Instantiations of the basic structure



Which of these notions of universality…

‣ Is related to undecidability?

‣ Yes: Universal Turing machines, The problem of universals… 
‣ No: Universal grammar, Basis of a vector space, Extremal points…

‣ Onsets the generation of complexity? 

‣ Yes: Universal Turing machines, Universal spin models… 
‣ No: Universal grammar, The problem of universals…

S. Stengele, T. Reinhart, T. Gonda & GDLC. Universality: Basic structure, manifestations and connections across disciplines, upcoming

 jumps to universality≈



‣A categorical framework for universality 
‣See poster by Sebastian Stengele & Tobias Reinhart



A categorical framework for universality 
‣A simulator is a map of the form

S. Stengele, T. Reinhart, T. Gonda & GDLC. A framework for universality  across disciplines, upcoming

4 A Framework for Universality

to relevant constraints in the situation of interest. For instance, for the universality of Turing machine,

we may take them to be computable functions, while for completeness of problems for computational

complexity classes they may correspond to functions with bounded complexity. We use the following

string diagramatic representation for the diagonal (or copying) morphism of type A! A⇥ A and the

unique morphism A! I for any object A of C respectively

A

A A

A

(6)

Within C we identify an object T of things of interest (e.g. Turing machines, spin systems, . . . ) and an

object C of contexts (e.g. input strings to Turing machines). Furthermore, for any object A, the hom-set

C(A,T ⇥C) comes equipped with a preorder% that is preserved by precomposition, i.e. we have

f % g =) f �h% g�h (7)

for arbitrary morphisms f ,g : A! T ⇥C and h : Z! A. All the examples of C that we consider at present

are well-pointed, in which case we also expect that

f % g () 8h 2 C(I,A) : f �h% g�h (8)

holds. This relation relaxes equality among morphisms. One way in which such a relation may arise

is from an underlying relation%B among a set of behaviors identified with the elements of the hom-set

C(I,B). As in the Introduction, specifying a morphism eval : T ⇥C! B allows one to define% via

f % g :, 8h 2 C(I,A) : eval� f �h%B eval�g�h. (9)

We use (9) as our working definition of%, to which we refer as behavioral relation.

We now turn our attention to simulators. To specify a simulator for our situation of interest described

by T , C, and%, we need

1. an object P of programs, and

2. two morphisms of C: the compiler sT : P! T and the context reduction sC : P⇥C!C.

Definition 2.1. A simulator s is a morphism s : P⇥C! T ⇥C of C that can be written as

sT sC

T C

P C

(10)

programs context

things

compiler context reduction

‣A simulator  is universal if for every thing  there is a program  such that for any context , the 
evaluation of  equals that of .

s t p c
s(p, c) (t, c)

eval

behaviorsB

‣We relate simulators and thereby grade universalities.

‣The universal spin model and the universal Turing machine are universal in this sense  and so is a dense subset. 



 universal≈

A categorical framework for universality 
Universality & Undecidability

‣For Linear Bounded Automata, eval cannot be weakly point surjective, so they are not bound to undecidability.

‣For Turing machines, eval is weakly point surjective, so they are bound to undecidability. 

‣   is weakly point surjective if for any  there is an  such that . f : A × B → C g : B → C a ∈ A f(a, − ) = g( − )

LAWVERE’S THEOREM Let  be weakly point surjective. Then every  has a fixed point. f : A × A → B g : B → B



From Universality
             to Undecidability



Undecidability
     No system can thoroughly
     talk about itself. 



Describe an attribute f : S → {0,1}

Attribute  is identified with f {n ∣ f(n) = 1} ∈ ℘(S)

No system can talk about itself
Set

The attribute “different from ”b{a, c}

℘(S)

{a} {b} {c}

{a, b} {b, c}

{a, b, c}

∅S

a

b
c

 A set can never be put in one-to-one correspondence with its power set.CANTOR’S THEOREM

Proven with the liar paradox (diagonalisation)
The liar paradox can never be captured from within the system.



‣ Very powerful:

These are all the liar paradox.

‣ This sentence is false

‣ The halting problem

‣ Gödel’s first incompleteness theorem

‣ Russell’s paradox

‣ Tarski’s theorem on the undefinability of truth

‣ Cantor’s Theorem on infinities, ….

No system can talk about itself

‣ Very far-reaching:  

  S → ℘(S) → ℘(℘(S)) → …
The liar paradox cannot be fixed.

‣ Can be made precise (Lawvere’s Theorem)
F. W. Lawvere. Diagonal arguments and cartesian closed categories. Lecture notes in mathematics, 92, 134 (1969)
N. S. Yanofsky. A universal approach to self-referential paradoxes, incompleteness and fixed points. Bull. Symbolic Logic 9, 362 (2003)

It limits what can be formalised, computed, learnt, known, 

said to be tru
e, said to exist...



From Universality to Undecidability
Universality allows for self-reference, which is a step away from self-reference and negation, 
which is at the core of undecidability.

THE INTUITIVE ARGUMENT 

GDLC, Universality everywhere implies undecidability everywhere, FQXi Essay 2020. 

Their precise relation will depend on the type of universality. 

Complexity of the system 

Universality tries to cap the complexity of a system. 

Undecidability: A thorough capping cannot exist.

‣The tension:



‣Compare two examples



Universal Turing machinesUniversal spin models

Compare two examples

‣  We first need to compare the objects: 

AutomataSpin models

So we cast spin models as automata.
S. Stengele, D. Drexel and GDLC, Classical spin Hamiltonians are context-sensitive languages. arXiv: 2006.03529
T. Reinhart and GDLC, The Grammar of the Ising model: A new complexity hierarchy, in the arxiv very soon.



The grammar of physical interactions

Formal language LH MachineSpin model  H

Not universal

Universal

Universal

‣ Universal spin models seem to be weaker than universal Turing machines.

‣ The language of any spin model has a grammar. 

context-sensitive

context-free

deterministic 
context-free

regular

recursively enumerable Turing machine

Linear bounded automaton

Pushdown automaton

Deterministic PDA

Finite state automaton

2D or higher D spin model

1D spin model

(Effectively) 0D spin model

S. Stengele, D. Drexel & GDLC, Classical spin Hamiltonians are context-sensitive languages. arXiv: 2006.03529 T. Reinhart and GDLC, The Grammar of the Ising model: A full characterisation, in the arxiv very soon.



Conclusions & Outlook



What is the reach of universality?
‣ A conceptual and a categorical framework for universality 

Universal as ‘all-encompassing’ Universality via simulators

4 A Framework for Universality

to relevant constraints in the situation of interest. For instance, for the universality of Turing machine,

we may take them to be computable functions, while for completeness of problems for computational

complexity classes they may correspond to functions with bounded complexity. We use the following

string diagramatic representation for the diagonal (or copying) morphism of type A! A⇥ A and the

unique morphism A! I for any object A of C respectively

A

A A

A

(6)

Within C we identify an object T of things of interest (e.g. Turing machines, spin systems, . . . ) and an

object C of contexts (e.g. input strings to Turing machines). Furthermore, for any object A, the hom-set

C(A,T ⇥C) comes equipped with a preorder% that is preserved by precomposition, i.e. we have

f % g =) f �h% g�h (7)

for arbitrary morphisms f ,g : A! T ⇥C and h : Z! A. All the examples of C that we consider at present

are well-pointed, in which case we also expect that

f % g () 8h 2 C(I,A) : f �h% g�h (8)

holds. This relation relaxes equality among morphisms. One way in which such a relation may arise

is from an underlying relation%B among a set of behaviors identified with the elements of the hom-set

C(I,B). As in the Introduction, specifying a morphism eval : T ⇥C! B allows one to define% via

f % g :, 8h 2 C(I,A) : eval� f �h%B eval�g�h. (9)

We use (9) as our working definition of%, to which we refer as behavioral relation.

We now turn our attention to simulators. To specify a simulator for our situation of interest described

by T , C, and%, we need

1. an object P of programs, and

2. two morphisms of C: the compiler sT : P! T and the context reduction sC : P⇥C!C.

Definition 2.1. A simulator s is a morphism s : P⇥C! T ⇥C of C that can be written as

sT sC

T C

P C

(10)

‣ Cast spin models as formal languages, and characterise its grammar
context-sensitive

context-free

deterministic 
context-free

regular

recursively enum.

2D and higher D spin models

1D spin models

(Effectively) 0D spin models
S. Stengele, T. Reinhart, T. Gonda & GDLC. Universality: Basic structure, manifestations and connections across disciplines, upcoming
S. Stengele, T. Reinhart, T. Gonda & GDLC. A framework for universality across disciplines. upcoming
S. Stengele, D. Drexel & GDLC, Classical spin Hamiltonians are context-sensitive languages. arXiv: 2006.03529
T. Reinhart & GDLC, The Grammar of the Ising model: A full characterisation, in the arxiv very soon.



What is the reach of universality?

‣ The jump to universality as a perspective on the origin of complexity: TEDx talk

Outlook

‣ Muddier terrain: universality for language and/or thought.

‣ Universality at the quantum level?

‣ If you like undecidability
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Why Can the Brain (and Not a
Computer) Make Sense of the Liar
Paradox?
Patrick Fraser 1*, Ricard Solé 2,3 and Gemma De las Cuevas 4

1 Department of Philosophy, University of Toronto, Toronto, ON, Canada, 2 ICREA Complex Systems Lab, University Pompeu

Fabra, Barcelona, Catalonia, 3 Santa Fe Institute, Santa Fe, NM, United States, 4 Institute for Theoretical Physics, Innsbruck,

Austria

Ordinary computing machines prohibit self-reference because it leads to logical

inconsistencies and undecidability. In contrast, the human mind can understand

self-referential statements without necessitating physically impossible brain states. Why

can the brain make sense of self-reference? Here, we address this question by

defining the Strange Loop Model, which features causal feedback between two brain

modules, and circumvents the paradoxes of self-reference and negation by unfolding the

inconsistency in time. We also argue that the metastable dynamics of the brain inhibit

and terminate unhalting inferences. Finally, we show that the representation of logical

inconsistencies in the Strange Loop Model leads to causal incongruence between brain

subsystems in Integrated Information Theory.

Keywords: self-reference, cognition, consciousness, computation, causal structure, integrated information theory

1. INTRODUCTION

Are brains like computers? Can technological metaphors provide satisfactory explanations for the
complexity of human brains (and brains in general)? Before electronic computers became a reality,
some versions of the previous questions had always been there. In the seventeenth century, the
development of mechanical clocks and later on mechanical automata led to questions with far-
reaching philosophical implications, such as the possibility of creating a mechanical human and
an artificial mind (by René Descartes and others Wood, 2002). Later, brains and machines were
compared to electric batteries (since it became clear that electricity was involved in brain processes),
and early works by visionaries such as Alfred Smee represented brains and the activity of thinking in
terms of networks of connected batteries (Smee, 1850). Other network-level metaphors of the brain
such as telegraphs and telephone webs replaced the old ones, until the metaphor of the computer
prevailed in the 1950s (Cobb, 2020).

The computer was apparently the right metaphor: It could store large amounts of data,
manipulate them and perform complex input-output tasks that involved information processing.
Additionally, the new wave of computing machines provided an appropriate technological context
to simulate logical elements similar to those present in nervous systems. Theoretical developments
within mathematical biology by McCulloch and Pitts (1943) revealed one first major result: The
units of cognition—neurons—could be described with a formal framework. Formal neurons were
described in terms of threshold units, largely inspired by the state-of-the-art knowledge of real
neurons (Rashevsky, 1960). Over the last decades, major quantitative advances have been obtained
by combining neuron-inspiredmodels withmultilayer architecture (LeCun et al., 2015) and physics
of neuromorphic computing (Indiveri and Liu, 2015; Markovi et al., 2020). These developments

Beyond the limits of undecidability?
Does the brain trascend these limits? And art?

Marcello Mastroianni in 8 1/2 by Federico Fellini (1963).
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Appendix



Universal spin models

‣A spin system  is a function  where  is a finite alphabet.  H′ Σn → ℤ Σ

‣For every spin configuration , consider its characteristic function  , defined as  and  if . σ ∈ Σn eσ eσ(σ) = 1 eσ(x) = 0 x ≠ σ

‣Construct the Boolean formula  which is satisfied if .ϕσ(x, fσ) fσ = eσ(x)

‣Faitfully reduce the satisfiability of  to the ground state energy problem of the spin model, resulting in . ϕσ Hσ

‣The satisfying assignment of  is transformed to a ground state of .ϕσ Hσ

‣Shift the energy of the flag spin  so it is  if the flag is up, and  if the flag is down.fσ H′ (σ) 0

‣Do this for every , and add the Hamiltonians using closure. σ ∈ Σn

‣Shift the energies of all spin configurations not in the ground state above . Δ

Theorem

A spin model is universal if and only if 

‣ Its GSE admits a polynomial-time faithful reduction from SAT, and

‣ It is closed.



‣A conceptual framework for universality 



Universals in Physics
Instantiations of the basic structure

‣  is the set of reference frames
‣  if there is a Lorentz transformation from  to 
‣  is any reference frame

C
(u, c) ∈ R u c
u

‣ Reference frame for physical observations



Universals in Biology

‣ Universal Biology

‣ Does not exist yet
‣  would be all forms of life,  would be “specialises to” and  would be the universal biologyC R u
‣ Inspired by universal Turing machines 

N. Goldenfeld, T. Biancalani, F. Jafarpour. Universal biology and the statistical mechanics of early life. Phil. Trans. Roc. Soc. A 375, 20160341, (2017).

Instantiations of the basic structure



‣A categorical framework for universality 
‣See poster by Sebastian Stengele & Tobias Reinhart



A categorical framework for universality 

‣A universal Turing machine  is universal:u

The set of programs

The universal Turing machine

Inputs to the computation

Outputs of the computation

4 A Framework for Universality

to relevant constraints in the situation of interest. For instance, for the universality of Turing machine,

we may take them to be computable functions, while for completeness of problems for computational

complexity classes they may correspond to functions with bounded complexity. We use the following

string diagramatic representation for the diagonal (or copying) morphism of type A! A⇥ A and the

unique morphism A! I for any object A of C respectively

A

A A

A

(6)

Within C we identify an object T of things of interest (e.g. Turing machines, spin systems, . . . ) and an

object C of contexts (e.g. input strings to Turing machines). Furthermore, for any object A, the hom-set

C(A,T ⇥C) comes equipped with a preorder% that is preserved by precomposition, i.e. we have

f % g =) f �h% g�h (7)

for arbitrary morphisms f ,g : A! T ⇥C and h : Z! A. All the examples of C that we consider at present

are well-pointed, in which case we also expect that

f % g () 8h 2 C(I,A) : f �h% g�h (8)

holds. This relation relaxes equality among morphisms. One way in which such a relation may arise

is from an underlying relation%B among a set of behaviors identified with the elements of the hom-set

C(I,B). As in the Introduction, specifying a morphism eval : T ⇥C! B allows one to define% via

f % g :, 8h 2 C(I,A) : eval� f �h%B eval�g�h. (9)

We use (9) as our working definition of%, to which we refer as behavioral relation.

We now turn our attention to simulators. To specify a simulator for our situation of interest described

by T , C, and%, we need

1. an object P of programs, and

2. two morphisms of C: the compiler sT : P! T and the context reduction sC : P⇥C!C.

Definition 2.1. A simulator s is a morphism s : P⇥C! T ⇥C of C that can be written as

sT sC

T C

P C

(10)

eval

pairs a program with an input



A categorical framework for universality 

‣A universal spin model  is universal: u

Energies

Outputs energy of a spin system in a spin configuration

 The set of spin configurations

The spin model

All spin systems

Transforms a spin system to an element
 of the spin model

Gives the spin configuration of the spin model

4 A Framework for Universality

to relevant constraints in the situation of interest. For instance, for the universality of Turing machine,

we may take them to be computable functions, while for completeness of problems for computational

complexity classes they may correspond to functions with bounded complexity. We use the following

string diagramatic representation for the diagonal (or copying) morphism of type A! A⇥ A and the

unique morphism A! I for any object A of C respectively

A

A A

A

(6)

Within C we identify an object T of things of interest (e.g. Turing machines, spin systems, . . . ) and an

object C of contexts (e.g. input strings to Turing machines). Furthermore, for any object A, the hom-set

C(A,T ⇥C) comes equipped with a preorder% that is preserved by precomposition, i.e. we have

f % g =) f �h% g�h (7)

for arbitrary morphisms f ,g : A! T ⇥C and h : Z! A. All the examples of C that we consider at present

are well-pointed, in which case we also expect that

f % g () 8h 2 C(I,A) : f �h% g�h (8)

holds. This relation relaxes equality among morphisms. One way in which such a relation may arise

is from an underlying relation%B among a set of behaviors identified with the elements of the hom-set

C(I,B). As in the Introduction, specifying a morphism eval : T ⇥C! B allows one to define% via

f % g :, 8h 2 C(I,A) : eval� f �h%B eval�g�h. (9)

We use (9) as our working definition of%, to which we refer as behavioral relation.

We now turn our attention to simulators. To specify a simulator for our situation of interest described

by T , C, and%, we need

1. an object P of programs, and

2. two morphisms of C: the compiler sT : P! T and the context reduction sC : P⇥C!C.

Definition 2.1. A simulator s is a morphism s : P⇥C! T ⇥C of C that can be written as

sT sC

T C

P C

(10)

eval



A categorical framework for universality 

Inclusion of  into ℚ ℝ

‣Dense subset is universal:

It maps  to an open ball around real number  with 
radius 

(t, δ) t
δ

4 A Framework for Universality

to relevant constraints in the situation of interest. For instance, for the universality of Turing machine,

we may take them to be computable functions, while for completeness of problems for computational

complexity classes they may correspond to functions with bounded complexity. We use the following

string diagramatic representation for the diagonal (or copying) morphism of type A! A⇥ A and the

unique morphism A! I for any object A of C respectively

A

A A

A

(6)

Within C we identify an object T of things of interest (e.g. Turing machines, spin systems, . . . ) and an

object C of contexts (e.g. input strings to Turing machines). Furthermore, for any object A, the hom-set

C(A,T ⇥C) comes equipped with a preorder% that is preserved by precomposition, i.e. we have

f % g =) f �h% g�h (7)

for arbitrary morphisms f ,g : A! T ⇥C and h : Z! A. All the examples of C that we consider at present

are well-pointed, in which case we also expect that

f % g () 8h 2 C(I,A) : f �h% g�h (8)

holds. This relation relaxes equality among morphisms. One way in which such a relation may arise

is from an underlying relation%B among a set of behaviors identified with the elements of the hom-set

C(I,B). As in the Introduction, specifying a morphism eval : T ⇥C! B allows one to define% via

f % g :, 8h 2 C(I,A) : eval� f �h%B eval�g�h. (9)

We use (9) as our working definition of%, to which we refer as behavioral relation.

We now turn our attention to simulators. To specify a simulator for our situation of interest described

by T , C, and%, we need

1. an object P of programs, and

2. two morphisms of C: the compiler sT : P! T and the context reduction sC : P⇥C!C.

Definition 2.1. A simulator s is a morphism s : P⇥C! T ⇥C of C that can be written as

sT sC

T C

P C

(10)

eval

The power set of the reals ℘(ℝ)

ℝ × ℝ+

A rational and a precision, ℚ × ℝ+ A singleton



‣Compare examples



THEOREM 
 is deterministic context-free. LH

‣  The language of a spin model  is H
LH = {(x, H(x)) ∣ x ∈ 𝒟} New complexity measure  

for classical spin models 

‣The language of the 1D Ising model 

LH = {(s1…sn, H(s1…sn)) for all n}

Casting spin models as formal languages

‣  The spin model 
where the domain  is defined 
for all system sizes

H : 𝒟 → Energy
𝒟

‣  The 1D Ising model  is 

  for all 

H

s1, …, sn ↦
n−1

∑
i=1

sisi+1

n

Formal language LHSpin model H Classify  in the Chomsky hierarchyLH



Complexity of the Ising model
Different easy-to-hard threshold

in P

NP-complete

Computational complexity 
of the Ground state energy problem

1D Ising

2D Ising

3D Ising

deterministic context-free

context-sensitive

Classification of  
in the Chomsky hierarchy

LH



context-sensitive

context-free

deterministic 
context-free

regular

recursively enumerable Turing machine

Linear bounded automaton

Pushdown automaton

Deterministic PDA

Finite state automaton

The freedom in casting  as H LH

(Effectively) 0D spin model

All other cases

‣  with the energy written in binary (instead of unary) is more complicated.LH

S. Stengele, D. Drexel & GDLC, Classical spin Hamiltonians are context-sensitive languages. arXiv: 2006.03529



The role of time

All other cases

Effectively 0D or 1D spin model
with 1 symbol and fixed interactions

0D spin model

‣  with trivial time evolution LU = {(x, UH(x)) ∣ x ∈ 𝒟} UH

context-sensitive

context-free

deterministic 
context-free

regular

recursively enumerable Turing machine

Linear bounded automaton

Pushdown automaton

Deterministic PDA

Finite state automaton

S. Stengele, D. Drexel & GDLC, Classical spin Hamiltonians are context-sensitive languages. arXiv: 2006.03529



Comparison with computational complexity

Polynomial time

Linear time

constant time

All other cases

Effectively 0D spin Hamiltonian

0D spin model

‣  is the set of yes instances to “Given , is  in the domain of  and is ” LH (x, E) x H E = H(x)?

‣What is the computational complexity of recognizing ?LH

S. Stengele, D. Drexel & GDLC, Classical spin Hamiltonians are context-sensitive languages. arXiv: 2006.03529



The grammar of the Ising model

T. Reinhart and GDLC, The Grammar of the Ising model: A full characterisation, in the arxiv very soon.



The grammar of the Ising model

T. Reinhart and GDLC, The Grammar of the Ising model: A full characterisation, in the arxiv very soon.


