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foil: a person or thing that contrasts 
with and so emphasizes and 
enhances the qualities of another.

“the earthy taste of grilled vegetables is a 
perfect foil for the tart bite of creamy goat 
cheese”

From: Google Dictionary supplied by Oxford Languages.

Foil Theories



• We want to answer questions like:
• What is responsible for the information processing advantages offered 

by quantum theory?
• Which features of quantum theory are “genuinely nonclassical”?

• To answer these questions, it is helpful to know what a world in 
which neither quantum nor classical theories.

• Two ways of doing this:
• Operational Frameworks like GPTs
• Ontological foil theories 

Foil Theories



But what do we mean by ”genuinely nonclassical”?
It depends on the number of assumptions you make about “classical” models

% phenomena that are
"Genuinely Quantum"

# assumptions about
    "Classical" models



• Example, does the state
1
2

01 − |10⟩

have a local hidden variable model?

• Bell correlations are “nonclassical”, but if someone claims that the EPR 
paradox has a classical explanation, and you say it does not because of 
Bell correlations then that would be wrong.

It depends on what you call “the phenomenon”

Experimental Setup Only measure in the same basis Measure in different bases
Phenomenon EPR paradox Bell’s correlations
Local hidden variable model? Yes No



• The Spekkens Toy Theory is the most interesting ontological foil 
theory (so far).

• It reproduces many features and phenomena of quantum 
theory.

• The underlying theory is literally classical Hamiltonian 
mechanics, just with a restriction on how much can be known.

• This is called an epistemic restriction or epistriction.
• It is local, noncontextual and 𝜓𝜓-epistemic.
• For a contemporary review, see

L. Hausmann, N. Nurgalieva, L. del Rio arXiv:2105.03277

The Spekkens Toy Theory



• The position that quantum states are states of knowledge is 
called:

The 𝜓𝜓-epistemic view

• The position that quantum states are states of reality (physical 
states) is called:

The 𝜓𝜓-ontic view

𝜓𝜓-epistemic vs. 𝜓𝜓-ontic



𝚿𝚿−𝐎𝐎



1. The Toy-Bit Theory
2. Explanations of Quantum Phenomena
3. Quantum Interference
4. Toy-Theories from Quasi-Quantization
5. Conclusions and Future Directions
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1. The Toy-Bit  Theory
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• We know that if a system can be in 𝑛𝑛 possible states then it 
takes 𝑚𝑚 = log2𝑛𝑛 bits to specify its state.

• Another way of thinking about this:
• What is the minimum number of yes/no questions I have to ask to 

specify the state exactly?
• To have the minimum number of questions, each question should cut 

the set of possible states in half.
• There is more than one possible set of questions, but the minimal 

number is unique and equal to 𝑚𝑚 = log2𝑛𝑛.

Bits in terms of questions



Example of a Minimal Set of Questions



Example of a Minimal Set of Questions



• Impose an “epistemic restriction” on how much we can know 
about a physical system, called the knowledge-balanace
principle:

• Of a minimal set of questions required to determine the state of a 
system exactly, at most we can only know the answer to half of them.  
We are completely uncertain about the answer to the other half.

• Simplest nontrivial case:  A system that has 4 possible states.
• It takes 2 questions to specify the state, so we can know the answer to 

at most one of them.
• This system contains 2 bits of information.  It will be the 

analogue of a rebit.  We call it a toy bit.

The Knowledge-Balance Principle



• We call the physical state of the system its ontic state.
• For a toy-bit, there are four possible ontic states.

• We label them 0,0 , 0,1 , 1,0 , (1,1).
• We can imagine a ball that can be in one of four boxes, laid out in a grid.

Ontic States



• The epistemic state of a toy-bit is a probability vector over the four 
ontic states: 𝑝𝑝00

𝑝𝑝01
𝑝𝑝10
𝑝𝑝11

but not all possible probabilities are compatible with the knowledge-
balance principle.

• E.g. consider the question set: Is the first bit 0?, Is the second bit +?
• If we know the answer to the first but not the second, we can have

0.5
0.5
0
0

or 
0
0

0.5
0.5

Epistemic States



• There are six epistemic states (probability distributions) 
compatible with the knowledge-balance principle.

• There is also a state of non-maximal knowledge

Epistemic States

0 =
0.5
0.5
0
0

1 =
0
0

0.5
0.5

+ =
0.5
0

0.5
0

− =
0

0.5
0

0.5
+𝑖𝑖 =

0.5
0
0

0.5

−𝑖𝑖 =
0

0.5
0.5
0

0.25
0.25
0.25
0.25



• We demand that measurements on toy bits must:

1. Be repeatable, i.e. yield the same result if performed twice in a row.
2. Not violate the knowledge-balance principle, i.e. they should leave the system in a 

valid epistemic state.

• This immediately implies that there cannot be a measurement that reveals 
the exact ontic state because this would have to leave us in an epistemic 
state like:

• But we can have measurements that reveal coarse grained information, 
provided they disturb the ontic state.

Measurements



• An X measurement gives outcomes ±1 as:

• If we apply it to the |0) state

and get the +1 outcome, then we will know that the ontic state must   
have been 0,0 before the measurement.
• To preserve the knowledge-balance principle and maintain repeatability (0,0) and 

(0,1) must get swapped with probability ½ during the measurement.
• Thus, after the measurement, the updated epistemic state will be + .

Example of a Valid Measurement



Valid Measurements on a toy bit and their “eigenstates”



• Reversible dynamics (the analogue of Schrödinger equation dynamics) on 
a toy bit is just a permutation on the underlying ontic states.  We can then 
compute the action on the epistemic states.

• Example:

Reversible Dynamics

|0) |+)

|1) |−)

|+) |1)

|−) |0)

| + 𝑖𝑖) | − 𝑖𝑖)

| − 𝑖𝑖) | + 𝑖𝑖)



• When we have two toy bits, each toy bit has its own ontic state:
0/1,0/1 𝐴𝐴 , 0/1,0/1 𝐵𝐵.

• There are 4 × 4 = 16 possible ontic states, so it takes 4 binary questions to 
specify the exact ontic state.

• By the knowledge-balance principle, we can only know the answer to 2 of 
them.

• Subtlety: We not only apply the knowledge-balance principle to the global 
system, but also to the individual subsystems.

Composite systems

0,0 𝐴𝐴

0,1 𝐴𝐴

1,0 𝐴𝐴

1,1 𝐴𝐴 This is not a valid epistemic 
state because it does not 
satisfy the knowledge-balance 
principle for toy-bit 𝐴𝐴.

0,
0

𝐵𝐵

0,
1

𝐵𝐵
1,

0
𝐵𝐵

1,
1

𝐵𝐵



• Of the valid epistemic states, some of them are products of independent 
distributions of the two toy bits.

• And some of them are correlated (“entangled”)

Product and Correlated States

0 𝐴𝐴 0 𝐵𝐵 + 𝐴𝐴 0 𝐵𝐵 −𝑖𝑖 𝐴𝐴 +𝑖𝑖 𝐵𝐵

Φ+
𝐴𝐴𝐴𝐴 Φ−

𝐴𝐴𝐴𝐴 Ψ+
𝐴𝐴𝐴𝐴



• Because we need to preserve the knowledge-balance principle 
for subsystems, not all permutations represent valid dynamics 
for a composite system.

• Example:

Reversible Dynamics on Composites



2. Explanations of 
Quantum Phenomena
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Indistinguishability of Pure States

|0) |+)
The reason that |0) and |+) are not perfectly distinguishable is because, whichever state is 
prepared, there is a probability 0.5 that the ontic state is (0,+).  When this happens, the physical 
state is exactly the same, so you cannot do any better than randomly guessing.

𝑝𝑝error = 0.5 × 0.5 = 0.25

Note: we cannot reproduce 𝑝𝑝error = 0.146.  The optimal distinguishing measurement does not 
have an analogue in the toy theory.



No-Cloning Theorem

|0)

|+)

0 |0)

+ |+)

The input states are in the same ontic state with 
probability 0.5.

The output states are in the same ontic state with 
probability 0.25.

The cloning device only has access to the ontic 
state, so it cannot do something different to the 
ontic state in the overlap depending on whether 
|0) or |+) was prepared.

Therefore, the output states must overlap at least 
as much as the input states.



• The EPR experiment works as EPR expected in this theory:
• The outcomes of all measurements are predetermined.
• The two systems are initially in a correlated probability distribution.
• The collapse is just updating information, followed by a local randomization of the 

system being measured.

EPR

Start in a 
correlated state 

Φ+
𝐴𝐴𝐴𝐴

Alice measures 𝑍𝑍 and 
finds +1.  There is a 

random local disturbance

System ends up 
in 0 𝐴𝐴 0 𝐵𝐵



Phenomena arising in epistricted theories Phenomena not arising in epistricted theories
Noncommutativity Bell inequality violations
Coherent superposition and interference Contextuality
Collapse of the “state” (Exponential) Quantum computational speedup
Complementarity Some details of items on the left
No-cloning and No-broadcasting
Teleportation
Remote Steering
Key distribution
Superdense coding
Monogamy of entanglement
Choi-Jamiolkowski isomorphism
Naimark extension and Stinespring dilation
Ambiguity of mixtures
Locally immeasurable product bases
Unextendable product bases
Pre- and post-selection effects
And many more…

Other Phenomena Reproduced by the Toy Theory



3. Interference



Collaborators

Lorenzo Catani
TU Berlin

David Schmid
Gdansk

Rob Spekkens
Perimeter

Based on Why interference phenomena do not capture the essence of quantum theory
arXiv:2111.13727 



• By far the most common argument given in favor of 𝜓𝜓-ontology is quantum 
interference.

“Interference is a real, observable, physical effect, and it requires a real 
physical cause.  Such a cause must behave in a way that corresponds to 
how the wavefunction behaves.” – T. Maudlin, Philosophy of Physics: Quantum Theory 
(Princeton, 2019)

Interference ⇒ Ψ-Ontology



“In this chapter we shall tackle immediately the basic element of the
mysterious behavior in its most strange form.
We choose to examine a phenomenon which is impossible, absolutely
impossible, to explain in any classical way, and which has in it the heart of
quantum mechanics. In reality, it contains the only mystery. We cannot make
the mystery go away by “explaining” how it works. We will just tell you how it
works. In telling you how it works we will have told you about the basic
peculiarities of all quantum mechanics.” - R. P. Feynman, R. B. Leighton, and M. L. Sands, The
Feynman lectures on physics. (Addison-Wesley world student series, 1961-1963)

Interference ⇒ Nonclassicality



“So what we're faced with is this: Electrons passing through this apparatus,
in so far as we are able to fathom the matter, do not take route h and do not
take route s and do not take both of those routes and do not take neither of
those routes; and the trouble is that those four possibilities are simply all of
the logical possibilities that we have any notion whatever of how to entertain!
What can such electrons be doing? It seems they must be doing something
which has simply never been dreamt of before (if our experiments are valid,
and if our arguments are right). Electrons seem to have modes of being, or
modes of moving, available to them which are quite unlike what we know
how to think about.
The name of that new mode (which is just a name for something we don't
understand) is superposition.” – D. Albert, Quantum Mechanics and Experience (Harvard
University Press, 1992)

Superposition is a New Category



• TRAP = Traditionally 
Regarded As Problematic

• We consider a single photon 
in a Mach-Zehnder 
interferometer with: 

• 50/50 beam-splitters.
• a phase shifter that can be 

set to 0 or 𝜋𝜋.
• a nondestructive detector that 

can be placed on one of the 
arms.

The TRAP Phenomena



• Suppose a single photon is inserted on path 𝐿𝐿.
• When the detector is not present:

• the photon is always detected on path 𝐿𝐿.
• This is interference, or wave-like behavior.

• If the detector is present, it clicks with probability 1
2
.  Regardless 

of whether it clicks:
• There is a probability 1

2
of the photon being detected on each path at 

the end.
• This is particle-like behavior.

The TRAP Phenomena



1. Wave-particle duality

2. Observer dependence of reality

3. Failure of explanation in terms of local causes

4. Superposition is a new category

But the TRAP phenomena arise in a suitable version of Spekkens’ toy 
theory, in which none of these are true.

What is TRAP about this?



• Beam-splitter:
𝐿𝐿 →

1
2

𝑅𝑅 − |𝐿𝐿⟩ , 𝑅𝑅 →
1
2

𝑅𝑅 + |𝐿𝐿⟩

• With no detector:
• 𝑡𝑡1: |𝐿𝐿⟩
• 𝑡𝑡2: 1

2
𝑅𝑅 − |𝐿𝐿⟩

• 𝑡𝑡3: 1
2

𝑅𝑅 − |𝐿𝐿⟩
• 𝑡𝑡4:|𝐿𝐿⟩

Mathematical Description



• Beam-splitter:
𝐿𝐿 →

1
2

𝑅𝑅 − |𝐿𝐿⟩ , 𝑅𝑅 →
1
2

𝑅𝑅 + |𝐿𝐿⟩

• With a detector:
• 𝑡𝑡1: |𝐿𝐿⟩
• 𝑡𝑡2: 1

2
𝑅𝑅 − |𝐿𝐿⟩

• 𝑡𝑡3:|𝐿𝐿⟩ with prob 1
2

or |𝑅𝑅⟩ with prob 1
2

• 𝑡𝑡4: 1
2

𝑅𝑅 − |𝐿𝐿⟩ or 1
2

𝑅𝑅 + |𝐿𝐿⟩

Mathematical Description



• A phase shifter in the right path acts as:
𝐿𝐿 → 𝐿𝐿 , 𝑅𝑅 → −|𝑅𝑅⟩

• Between 𝑡𝑡2 and 𝑡𝑡3 the state transforms as:
1
2

𝑅𝑅 − |𝐿𝐿⟩ → −
1
2

( 𝑅𝑅 + |𝐿𝐿⟩)

• And then the final beam-splitter gives |𝑅𝑅⟩ rather than |𝐿𝐿⟩.

Mathematical Description



• Consider 𝐿𝐿 and 𝑅𝑅 as spatial modes:
• 𝑛𝑛 𝐿𝐿/𝑅𝑅 is the state in which the left/right mode contains 𝑛𝑛 photons.
• Hilbert space is 𝐻𝐻𝐿𝐿 ⊗𝐻𝐻𝑅𝑅
• Our experiment only involves the one-photon subspace.

• The reasons for using this description are:
• It is more closely related to the structure of our model.
• It makes it clear that the detector is a local operation, i.e. it acts on 𝐻𝐻𝑅𝑅

only.

Field theoretic description



• Beam-splitter:
1 𝐿𝐿 0 𝑅𝑅 →

1
2

0 𝐿𝐿 1 𝑅𝑅 − 1 𝐿𝐿 0 𝑅𝑅 ,

0 𝐿𝐿 1 𝑅𝑅 →
1
2

0 𝐿𝐿 1 𝑅𝑅 + 1 𝐿𝐿 0 𝑅𝑅

• With no detector:
• 𝑡𝑡1: 1 𝐿𝐿 0 𝑅𝑅

• 𝑡𝑡2: 1
2

0 𝐿𝐿 1 𝑅𝑅 − 1 𝐿𝐿 0 𝑅𝑅

• 𝑡𝑡3: 1
2

0 𝐿𝐿 1 𝑅𝑅 − 1 𝐿𝐿 0 𝑅𝑅

• 𝑡𝑡4: 1 𝐿𝐿 0 𝑅𝑅

Field-Theoretic Description



• Beam-splitter:
1 𝐿𝐿 0 𝑅𝑅 →

1
2

0 𝐿𝐿 1 𝑅𝑅 − 1 𝐿𝐿 0 𝑅𝑅 ,

0 𝐿𝐿 1 𝑅𝑅 →
1
2

0 𝐿𝐿 1 𝑅𝑅 + 1 𝐿𝐿 0 𝑅𝑅

• With a detector:
• 𝑡𝑡1: 1 𝐿𝐿 0 𝑅𝑅

• 𝑡𝑡2: 1
2

0 𝐿𝐿 1 𝑅𝑅 − 1 𝐿𝐿 0 𝑅𝑅

• 𝑡𝑡3: 1 𝐿𝐿 0 𝑅𝑅 with prob 1
2

or 0 𝐿𝐿 1 𝑅𝑅 with prob 1
2

• 𝑡𝑡4: 1
2

0 𝐿𝐿 1 𝑅𝑅 − 1 𝐿𝐿 0 𝑅𝑅 or 
1
2

0 𝐿𝐿 1 𝑅𝑅 + 1 𝐿𝐿 0 𝑅𝑅

Field-Theoretic Description



• A phase shifter in the right path acts as:
0 𝑅𝑅 → 0 𝑅𝑅 , 1 𝑅𝑅 → − 1 𝑅𝑅

• Between 𝑡𝑡2 and 𝑡𝑡3 the state transforms as:
1
2

0 𝐿𝐿 1 𝑅𝑅 − 1 𝐿𝐿 0 𝑅𝑅 → −
1
2

0 𝐿𝐿 1 𝑅𝑅 + 1 𝐿𝐿 0 𝑅𝑅)

• And then the final beamsplitter gives 0 𝐿𝐿 1 𝑅𝑅 rather than 1 𝐿𝐿 0 𝑅𝑅.

Field-Theoretic Description



• Spekkens’ toy theory but applied to field modes rather than particles.
• A mode is assigned two binary ontic variables:

• An occupation number 𝑁𝑁 – a particle-like property
• A “phase” Φ – a wave like property

• It has both at all times.

Our model: Ontology



Single Mode Epistemic States

± =
1
2

0 ± |1⟩



• An implicit assumption in the TRAP implications is that:
• If there is no photon in a mode then there is nothing in that mode.
• i.e., there is no degree of freedom that could carry information about 

whether there was a detector in that mode to the second beam-splitter.
• In our model, the vacuum |0⟩ is represented by an epistemic 

state in which 𝑁𝑁 = 0, but Φ can be either 0 or 1.
• Φ can convey information to the second beamsplitter.

• In a 𝜓𝜓-epistemic model it is natural and necessary for the 
vacuum to be represented by a probability distribution with 
support on more than one ontic state.

The vacuum state is an epistemic state



• Consider the states: 
|0⟩, + = 1

2
( 0 + |1⟩) and − = 1

2
( 0 − |1⟩)

and the probability distributions 𝜇𝜇0, 𝜇𝜇+, 𝜇𝜇− that represent them.
• − + = 0, so there can be no ontic states in the support of both 𝜇𝜇+

and 𝜇𝜇−.
• |0⟩ and |+⟩ are nonorthogonal, so there should be ontic states in the 

joint support of 𝜇𝜇0 and 𝜇𝜇+ in a 𝜓𝜓-epistemic model.
• Similarly, |0⟩ and |−⟩ are nonorthogonal, so there should be ontic 

states in the joint support of 𝜇𝜇0 and 𝜇𝜇− as well.
• ⇒ there must be more than one ontic state in the support of 𝜇𝜇0.

Why must the vacuum have support on more than one ontic 
state?



Single Mode Measurements



Single Mode Update Rule



Two-mode Epistemic States



Two Mode Update Rule



𝑁𝑁𝐿𝐿out = Φ𝐿𝐿
in ⊕Φ𝑅𝑅

in

𝑁𝑁𝑅𝑅out = 𝑁𝑁𝐿𝐿in ⊕ 𝑁𝑁𝑅𝑅in ⊕Φ𝐿𝐿
in ⊕Φ𝑅𝑅

in

Φ𝐿𝐿
out = 𝑁𝑁𝐿𝐿in ⊕Φ𝑅𝑅

in

Φ𝑅𝑅
out = Φ𝑅𝑅

in

The Beam-splitter Transformation



No detector 𝑡𝑡1 → 𝑡𝑡2



No detector 𝑡𝑡2 → 𝑡𝑡3



No detector 𝑡𝑡3 → 𝑡𝑡4



With a detector 𝑡𝑡2 → 𝑡𝑡3



With a detector 𝑡𝑡3 → 𝑡𝑡4



• A phase shifter on the 𝑅𝑅 mode is represented by:
• On the two modes, it acts as

Phase Shifter



With a phase shifter 𝑡𝑡2 → 𝑡𝑡3



With a phase shifter 𝑡𝑡3 → 𝑡𝑡4



• With the same model, we can reproduce:
• The Elitzur-Vaidman bomb tester.
• Wheeler’s delayed choice experiment.

• By extending the model, we can reproduce:
• The (delayed choice) quantum eraser.
• (Some versions of) counterfactual computation/communication.

• Many other interference phenomena claimed to be nonclassical 
can be reproduced in a similar way.

Further Results



4. Toy-Theories from 
Quasi-Quantization



• The knowledge-balance principle is not applicable to all 
systems, 

• e.g. a system that requires 3 binary questions to specify the ontic state.
• It is difficult to apply and makes the relationship to classical 

mechanics and quantum theory obscure.
• Spekkens developed a better approach called Quasi-

Quantization – the toy theory analogue of canonical 
quantization.

Quasi-Quantization



• We start by considering Hamiltonian mechanics on a phase 
space. Quasi-Quantization is a way of imposing an epistemic 
restriction on such theories.

• Guiding analogy:
• Quantum: A set of observables is jointly measurable iff the observables 

pairwise commute according to the matrix commutator.
• Epistricted: A set of variables is jointly knowable iff the variables 

pairwise commute according to the Poisson bracket.

Quasi-Quantization



• Spekkens also restricts attention to quadrature variables.  
• These are linear combinations of the fundamental phase-space 

variables, e.g. 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽.

• The epistemic restriction he adopts is:
• Classical complementarity: The valid epistemic states are those 

wherein an agent knows the values of a set of quadrature variables that 
Poisson commute, and is maximally ignorant otherwise.

Classical Complementarity



• Configuration space: is ℝ𝑛𝑛 ∋ q1, q2,⋯ , qn
• Phase space is Ω ≡ ℝ2𝑛𝑛 ∋ 𝐦𝐦 = q1, p1, q2, p2,⋯ , qn, pn
• Functionals on phase space: 𝑓𝑓:Ω → ℝ
• Poisson bracket:

𝑓𝑓,𝑔𝑔 (𝐦𝐦) = �
𝑗𝑗=1

𝑛𝑛
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝜕𝜕𝑔𝑔
𝜕𝜕𝑝𝑝𝑗𝑗

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑗𝑗

𝜕𝜕𝑔𝑔
𝜕𝜕𝑞𝑞𝑗𝑗

(𝐦𝐦)

• Linear (quadrature) variables:
𝑓𝑓 = a1𝑞𝑞1 + b1𝑝𝑝1 + ⋯+ a𝑛𝑛𝑞𝑞𝑛𝑛 + b𝑛𝑛𝑝𝑝𝑛𝑛 + c, a1, b1,⋯ ,𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛 ∈ ℝ

• Associate with vector 𝐟𝐟 = a1, b1,⋯ , a𝑛𝑛, b𝑛𝑛 ∈ ℝ2𝑛𝑛

• For these, the Poisson bracket is:

𝑓𝑓,𝑔𝑔 𝐦𝐦 = 𝐟𝐟𝑇𝑇𝐽𝐽𝐠𝐠 ≡ 𝐟𝐟, 𝐠𝐠 , 𝐽𝐽 =

0 1 0 0 ⋯
−1 0 0 0 ⋯
0 0 0 1 ⋯
0 0 −1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

Continuous Degrees of Freedom



• Configuration space: is (ℤ𝑑𝑑)𝑛𝑛∋ q1, q2,⋯ , qn
• Phase space is Ω ≡ (ℤ𝑑𝑑)2𝑛𝑛∋ 𝐦𝐦 = q1, p1, q2, p2,⋯ , qn, pn
• Functionals on phase space: 𝑓𝑓:Ω → ℤ𝑑𝑑
• Poisson bracket:

𝑓𝑓,𝑔𝑔 𝐦𝐦 = �
𝑗𝑗=1

𝑛𝑛

−

• Linear (quadrature) variables:
𝑓𝑓 = a1𝑞𝑞1 + b1𝑝𝑝1 + ⋯+ a𝑛𝑛𝑞𝑞𝑛𝑛 + b𝑛𝑛𝑝𝑝𝑛𝑛 + c, a1, b1,⋯ ,𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 ∈ ℤ𝑑𝑑

• Associate with vector 𝐟𝐟 = a1, b1,⋯ , a𝑛𝑛, b𝑛𝑛 ∈ (ℤ𝑑𝑑)2𝑛𝑛
• For these, the Poisson bracket is:

𝑓𝑓,𝑔𝑔 𝐦𝐦 = 𝐟𝐟𝑇𝑇𝐽𝐽𝐠𝐠 ≡ 𝐟𝐟, 𝐠𝐠 , 𝐽𝐽 =

0 1 0 0 ⋯
−1 0 0 0 ⋯
0 0 0 1 ⋯
0 0 −1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

Discrete Degrees of Freedom



• For odd Hilbert space dimensions, Spekkens’ toy theory is 
operationally equivalent to stabilizer quantum theory.

• For even dimensions it is not:
• Expected, since the stabilizer qubit theory has contextuality and 

nonlocality, but Spekkens’ theory does not.
• This is proved using the Wigner-Moyal formalism for stabilizer 

quantum mechanics.
• So the toy theory is not only classical in a very strong sense, 

but it is also equivalent to a subtheory of quantum mechanics in 
odd dimensions.

Quadrature Epistricted Theories as Subtheories of Quantum 
Mechanics



5. Conclusions and Future 
Directions



• We can reproduce many seemingly puzzling quantum 
phenomena in a theory that is literally classical mechanics, but 
with an epistemic restriction.

• Apart from the anomalous toy-bit theory, these operationally 
reproduce subtheories of quantum theory.

• Anything that appears in these theories cannot be a source of 
(exponential) quantum computational advantage.

• The main candidates that are not in the toy-theory are:
nonlocality, contextuality, 𝜓𝜓-ontology

Conclusions



• A toy field theory that is not restricted to one photon.
• What is the toy theory analogue of creation and annihilation operators.

• Non quadrature epistricted theories:
• E.g. states with a definite value of modular momentum 𝑒𝑒𝑖𝑖𝑖𝑖 �𝑝𝑝
• Status of the Gaussian toy theory in the new approach.

• Generalization to all symplectic structures on which Hamiltonian 
mechanics can be defined.

• Epistrictization analogues of different methods of quantization.
• Needed for theories that do not have a symplectic structure, e.g.

electromagnetism and gravity.

Future Directions
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